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In section 1, the calculation of stress σ and strain ε under an indenting tip is presented,
by utilizing the JKR theory. Then, in sections 2 and 3, in order to facilitate the use of
our model and procedure presented in the main text, the GNU/Octave representations of
the combination of the JKR model with the SLS (section 2) and GM2 model (section 3)
are shown. Both code snippets below can be used directly to calculate the indentation
depth as a function of time with the GNU/Octave’s lsode function. Section 4 provides an
overview of the parameters and variables used for the described method. In section 5, the
influence of the adhesion force to the results is studied, whereas in section 6 the sensitivity
of the model to the initial parameters is investigated. Representative force vs. indentation
depth plots are provided in section 7 for both the determination of reduced modulus and
hardness as well as viscoelastic parameters.

1 Calculating the stress and strain under the indenter

The JKR theory describes the contact radius a as a function of the force F by1

a3 =
3R

4E
F̃ , (1)

with

F̃ = F + 2Fad + 2
(
FadF + F 2

ad

) 1
2 . (2)

The relationship between a and indentation depth δ is given by2,3

δ =
a2

R
−
(

4aFad
3RE

) 1
2

. (3)

From equation 1 the reduced modulus E can be expressed as

E =
3R

4a3
F̃ (4)

and inserted in equation 3 to get
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δ =
a2

R

[
1− 4

3

(
Fad

F̃

) 1
2

]
. (5)

Equation 5 can then be used to express the contact radius a in terms of the measureable
quantities R, δ, F , and Fad:

a2 =
Rδ

1− 4
3

(
Fad

F̃

) 1
2

. (6)

Now, the stress beneath the indenter has to be calcuated. The theory gives the fol-
lowing stress distribution for a spherical indenter where r is the lateral coordinate, with
r = 0 describing the center of the circular contact area and r = a its rim:3

σ(r) =
E

π

(
δ

a
− a

R

)(
1− r2

a2

)− 1
2

+
2Ea

πR

(
1− r2

a2

) 1
2

. (7)

Then, the stress is averaged over the contact region with contact radius a by

σJKR =
1

a

∫ a

r=0
σ(r)dr =

Eδ

2a
. (8)

Inserting equation 4 in equation 8 gives

σJKR =
3Rδ

8a4
F̃ (9)

and the contact radius a can be eliminated by inserting equation 6 in equation 9, which
yields

σJKR =
3F̃

8Rδ

[
1− 4

3

(
Fad

F̃

) 1
2

]2
. (10)

In this article, the stress beneath the indenter σJKR is calculated using equation 10,
as is stated in the main text.

Now, only the strain εJKR remains unknown. Here, it will be assumed that Hooke’s
law is valid for the average stress σJKR and average strain εJKR

εJKR = σJKRE
−1. (11)

By inserting equation 8 in equation 11, σJKR and E are eliminated and only

εJKR =
1

2

δ

a
(12)

remains. Now, a in equation 12 is eliminated by inserting equation 6, which yields

εJKR =
1

2

(
δ

R

) 1
2

[
1− 4

3

(
Fad

F̃

) 1
2

] 1
2

. (13)

This equation is identical to the one given in the main text to describe the average
strain beneath the indenter.

Equation 11 is a usual assumption for the linear elastic regime and commonly used
to calculate strain in contact mechanics.4–7 Note that in the cited works, the stress and
strain terms are not identical to the ones used here as adhesion is not considered. However,
even when comparing our stress and strain definitions at zero adhesion force (identical to
the Hertz model) it turns out that in the case of the common nanoindentation stress and
strain,5 they differ by a constant factor: σJKR = c1σNI and εJKR = c2εNI . c1 and c2
are the constant factors and the index NI identifies the nanoindentation stress and strain
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definitions found in the literature. The resulting modulus also differs by a constant factor,
so that E = c1c

−1
2 c3ENI . In the case of nanoindentation stress and strain c1 = 3π/8,

c2 = 1/2, and c3 = 4/(3π) so that c1c
−1
2 c3 = 1. This means that while stress and strain

differ by a constant factor, the modulus definitions are identical.

2 Standard linear solid (SLS) model

In the following code, which represents the differential equation for the indentation depth
by using the SLS model to describe the time dependent material behavior, the variables
are:

E 1 ... E∞

E 2 ... E1

eta ... η

F ... F force schedule F (t)

dFdt ... dF
dt time derivative of the force schedule dF

dt (t)

R ... R tip radius or effective radius

F ad ... Fad adhesion force

y ... δ indentation depth

dy ... dδ
dt time derivative of the indentation depth

A = E_1;

B = eta*((E_1 + E_2)./E_2);

C = eta./E_2;

F_twiddle = F + 2*F_ad + 2*( F_ad*F + F_ad ^2) ^(1/2);

F_twiddle_dot = dFdt *(1 + F_ad*(F_ad*(F_ad + F))^( -1/2));

dy = (y*(sqrt(-((R*y)/( -3+4* sqrt(F_ad/F_twiddle))))*F_twiddle ...

*(-16* F_ad +3*( -3+8* sqrt(F_ad/F_twiddle))*F_twiddle +3*C*(-3+4 ...

*sqrt(F_ad/F_twiddle))*F_twiddle_dot)+4* sqrt (3)*R*y^2*(A*F_twiddle ...

-(B*sqrt(F_ad/F_twiddle)*F_twiddle_dot)/( -3+4* sqrt(F_ad ...

/F_twiddle)))))/( F_twiddle *(-2* sqrt (3)*B*R*y^2+C*sqrt(-((R*y)/(-3 ...

+4* sqrt(F_ad/F_twiddle))))*(-16* F_ad +3*( -3 ...

+8* sqrt(F_ad/F_twiddle))*F_twiddle)));

3 Generalized Maxwell order 2 (GM2) model

The constitutive equation for the GM2 model is a second order differential equation of the
following form

σ = Aε+Bε̇+ Cε̈−Dσ̇ − Eσ̈,

with

A = E1

B =

(
η1 + η2
E∞

+
η1
E1

+
η2
E2

)
E∞

C =
η1η2
E1E2

(E∞ + E1 + E2)

D =
η1
E1

+
η2
E2

E =
η1η2
E1E2

.
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To solve this second order differential equation numerically, it has to be written as a
system of two differential equations of first order, as is done below. The variables used
have the following meaning:

E 1 ... E∞

E 2 ... E1

E 3 ... E2

eta ... η1

eta2 ... η2

F ... F force schedule F (t)

dFdt ... dF
dt time derivative of the force schedule dF

dt (t)

d2Fdt2 ... d2F
dt2

second time derivative of the force schedule d2F
dt2

(t)

R ... R tip radius or effective radius

F ad ... Fad adhesion force

y(1) ... δ indentation depth

y(2) ... dδ
dt time derivative of the indentation depth

dy(1) ... dδ
dt time derivative of the indentation depth

dy(2) ... d2δ
dt2

second time derivative of the indentation depth

A = E_1;

B = ((eta + eta2)/E_1 + eta/E_2 + eta2/E_3)*E_1;

C = (eta*eta2/(E_2*E_3))*(E_1 + E_2 + E_3);

D = (eta/E_2 + eta2/E_3);

E = eta*eta2/(E_2*E_3);

F_twiddle = F + 2*F_ad + 2*( F_ad*F + F_ad ^2) ^(1/2);

F_twiddle_dot = (1 + F_ad/sqrt(F_ad*(F_ad + F)))*dFdt;

F_twiddle_2dot = d2Fdt2 + (sqrt(F_ad)*(-dFdt^2 + 2*( F_ad ...

+ F)*d2Fdt2))/(2*( F_ad + F)^(3/2));

dy(1) = y(2);

dy(2) = (y(1) ^2* sqrt((R*y(1))/(3 -4* sqrt(F_ad/F_twiddle))) ...

*( -3+4* sqrt(F_ad/F_twiddle))^3* F_twiddle *( -((2*E*(16 ...

*F_ad +(9 -24* sqrt(F_ad/F_twiddle))*F_twiddle)*y(2)^2) ...

/y(1)^3)+(y(2) *(3*D*(3-8* sqrt(F_ad/F_twiddle))*F_twiddle ...

+sqrt (3)*C*sqrt((R*y(1))/(3-4* sqrt(F_ad/F_twiddle)))*(-3 ...

+4* sqrt(F_ad/F_twiddle))*y(2) +2*(8*D*F_ad +3*E*(3-4 ...

*sqrt(F_ad/F_twiddle))*F_twiddle_dot)))/y(1) ^2+(1/((3 -4 ...

*sqrt(F_ad/F_twiddle))^2* F_twiddle ^3))*2* sqrt (3) ...

*sqrt((R*y(1))/(3-4* sqrt(F_ad/F_twiddle)))*(54*A*(1 ...

-4*sqrt(F_ad/F_twiddle))*F_twiddle ^3+2*C*F_ad *(33 ...

-20*sqrt(F_ad/F_twiddle))*F_twiddle_dot ^2+ F_twiddle ...

*(16*B*F_ad *( -3+2* sqrt(F_ad/F_twiddle))*F_twiddle_dot ...

-27*C*sqrt(F_ad/F_twiddle)*F_twiddle_dot ^2+16*C*F_ad ...

*( -3+2* sqrt(F_ad/F_twiddle))*F_twiddle_2dot)+2 ...

*F_twiddle ^2*(16*A*F_ad *(9-4* sqrt(F_ad/F_twiddle)) ...

+9* sqrt(F_ad/F_twiddle)*(B*F_twiddle_dot ...

+C*F_twiddle_2dot)))+(1/(y(1)*F_twiddle))*(3*( -3 ...

+8* sqrt(F_ad/F_twiddle))*F_twiddle ^2 ...

+2* sqrt(F_ad/F_twiddle)*F_twiddle_dot *(2* sqrt (3)*C ...

*sqrt((R*y(1))/(3-4* sqrt(F_ad/F_twiddle)))*y(2) ...

-3*E*F_twiddle_dot)+F_twiddle *( -16* F_ad +(2*B*R ...

*y(1)*y(2))/sqrt((R*y(1))/(9 -12* sqrt(F_ad/F_twiddle))) ...

-9*D*F_twiddle_dot -9*E*F_twiddle_2dot +12 ...

*sqrt(F_ad/F_twiddle)*(D*F_twiddle_dot ...

+E*F_twiddle_2dot)))))/(2* sqrt (3)*C*R*y(1) ^2*(16 ...

4



*F_ad *(9-4* sqrt(F_ad/F_twiddle))+27*(1 ...

-4*sqrt(F_ad/F_twiddle))*F_twiddle)+E*sqrt((R*y(1)) ...

/(3 -4* sqrt(F_ad/F_twiddle)))*(256* F_ad ^2*(15 ...

-4*sqrt(F_ad/F_twiddle))+1440* F_ad *(3 ...

-4*sqrt(F_ad/F_twiddle))*F_twiddle +81*(3 ...

-20*sqrt(F_ad/F_twiddle))*F_twiddle ^2));

4 Parameter Summary

In this section, we provide a short summary of the parameters and quantities that are
measured (input) and those that are determined from fitting the constitutive equation in
δ and F (given as GNU/Octave code above) to the experiment (output).

measured constants (input)

Rtip ... by tip characterizer

Fad ... during retraction from the surface at the end of the experiment

δplast ... residual indentation depth after plastic deformation

δmax ... maximum indentation depth during plastic deformation

δ0 ... difference in indentation between contact and elastic pre-loading

measured quantities, time resolved (input)

δ(t) ... by monitoring the AFM’s piezo elongation and cantilever deflection

F (t) ... by AFM cantilever deflection (only for verification)

assumed parameters (input)

ν ... ν2 � 1 ⇒ (1− ν2)/E ≈ 1/E in eq. 1

δ̇0 ... 0

parameters determined by fitting the model to the experiment (output)

E∞, E1, E2, η1, η2

5 Influence of adhesion force

In this section, the influence of the adhesion force Fad to the creep curves δ(t) is studied
and the error that is made by neglecting the adhesion force is investigated. First only
calculated creep curves are considered and then it is shown that also the parameters
determined from experimental data suffer from neglecting the adhesion force.

5.1 General effects of adhesion

First, the effect of the adhesion force to the creep curve δ(t) is displayed in figure S1.
The curves were calculated using the GM2 model in combination with the JKR model
(for Fad > 0) and Hertz model (for Fad = 0). The parameters were: E∞ = 2.3 GPa,
E1 = 1.5 GPa, E2 = 0.8 GPa, η1 = 1.3 GPa s, η2 = 13 GPa s, Rtip = 350 nm, Ri = 2Rtip,
F0 = 50 nN, δ̇0 = 0. δ0 was determined from the JKR contact mechanics for E = E∞
(which is consistent with δ̇0 = 0). The load schedule was identical to the one used in the
experiments. The adhesion force is varied from 0 to 300 nN in steps of 100 nN.

In the magnification of the initial creep curve (figure S1b), it can be seen that the
initial indentation depth is increasing with increasing adhesion force. The overall curve
(figure S1a) shows that also the final indentation depth (at t = 120 s) is increasing with
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increasing adhesion force. Both observations make sense, as an increase in adhesion force
is an effective increase of the overall acting force and, thus, the indentation depth should
increase if the adhesion force increases and the mechanical parameters stay constant.
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Figure S1: The influence of adhesion force to the indentation depth. The curves were
calculated using the GM2 model in combination with the JKR or Hertz model, as indi-
cated. (a) full curves, (b) the first 1.4 s of (a), (c) difference between JKR indentation
depth (δJKR) and the Hertz indentation depth (δHertz), (d) the first 5 s of (c).

The difference between the curve without adhesion and the ones with adhesion is
plotted in figure S1c and S1d. At t = 0 s the difference is relatively large (e.g. 2.2 nm for
Fad = 300 nN) and decreases during the loading segment quickly (at t = 120 s it is about
0.53 nm for Fad = 300 nN) to become approximately constant from t ≈ 80 s. This means
that the influence of the adhesion force is decreasing with increasing indentation depth,
but it does not appear to vanish completely.

5.2 Neglecting adhesion: simulated data

Now, what happens when the adhesion force is neglected and a curve calculated with Fad
= 300 nN and other parameters as specified above is fitted with the Hertz model? Note
that there are two possibilities to do this. One is that the calculated JKR curve is not
changed and left with the initial conditions (IC) corresponding to the JKR model (δ0 6= 0
if Fad 6= 0 and F ≥ 0). The other possibility is to shift the JKR curve, so that the
initial condition of the Hertz model is satisfied (δ0 = 0 if F = 0). The results of fitting
a calculated creep curve (using the JKR-GM2 model) with the Hertz model using both
possibilities are presented in table S1.

The first case, using the JKR initial conditions for the Hertz model, is inconsistent
with the Hertz theory as it would imply a pre-existing deformation without an external
force. This is evident from the resulting fit parameters, shown in the second column of
table S1. They are clearly different from the parameters that were used to calculate the
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Table S1: Comparison of parameters; original: used as an input to the JKR-GM2 model;
JKR IC: from fitting with a Hertz-GM2 model using the JKR IC; Hertz IC: from fitting
with a Hertz-GM2 model by using the Hertz IC and offsetting the data; see the text for
other parameters used

original JKR IC Hertz IC

E∞ / GPa 2.3 2.2 2.8

E1 / GPa 1.5 3.7 0.007

E2 / GPa 0.8 2.2 0.18

η1 / GPa s 1.3 2.0 0.004

η2 / GPa s 13 29 2.8

curve using the JKR model as specified in the first column of table S1. The resulting
fit and the original data are plotted in figure S2. Although the model is clearly wrong
(the original data is calculated with the JKR model but fitted with the Hertz model) and
produces incorrect parameters, the fit converged and seems to describe the data well. The
main problem with this approach is that adhesion is partially acknowledged, by supplying
an initial deformation but not the force needed to create it, without a proper framework
to handle such conditions.

The second case, using the Hertz initial conditions by offsetting the data, is also prob-
lematic as we completely neglect the deformation caused by adhesion. However, it is
consistent with the applied model. In this case, however, fits did not converge with the
initial parameter δ̇0 = 0. It was possible to fit the data only when the initial creep rate
δ̇0 was raised to 0.1 nm s−1. Again, this is inconsistent with the actual initial conditions
during calculation of data to be fitted. As one would expect, also in this case the deter-
mined parameters were different from the parameters used to generate the curve (compare
the third column of table S1 with the first column). In this case, the fit seems to deviate
slightly from the JKR model at t < 5 s (see figure S2b).

(a) (b)

Figure S2: Curves simulated with the JKR model (squares and circles) and the corre-
sponding fits using the Hertz model. Squares indicate a fit using JKR initial conditions.
Circles describe the JKR curve that has been shifted to meet the Hertz initial conditions.
(a) full curves, (b) the first 5 s of (a).

If the adhesion force is small, e.g. 30 nN, neglecting it becomes less of a problem. If
such a creep curve (calculated with JKR-GM2, Fad = 30 nN, other parameters same as
before) is fitted with a Hertz-GM2 model, the resulting viscoelastic parameters are (relative
deviations from the values used as input for the JKR model are given in brackets): E∞ =
2.3 GPa (+0%), E1 = 2.1 GPa (+40%), E2 = 1.1 GPa (+38%), η1 = 1.5 GPa s (+15%),
η2 = 17 GPa s (+31%). Interestingly, offsetting the data to suit the Hertz initial conditions
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did still not work because also in this case the fit did not converge for δ̇0 = 0.

5.3 Neglecting adhesion: experimental data

Here, it is demonstrated what happens when adhesion is neglected when evaluating ex-
perimental data. Only the curves that have been averaged from single curves on one
position are fitted to reduce the scattering, as is described in the main text. Again both
cases (Hertz model with JKR initial conditions and Hertz model with Hertz initial con-
ditions) are investigated. Similarly to the simulated data, it was not possible to fit the
experimental data using the Hertz initial conditions and δ̇0 = 0. In fact, δ̇0 had to varied
between 0.1 nm s−1 and 0.5 nm s−1 to be able to fit the data. This fact alone renders the
parameters obtained untrustworthy. Fitting the experiments with the Hertz model and
the JKR initial conditions worked well without the need to adjust δ̇0, or anything else.
The parameters obtained by the Hertz model are compared to the parameters obtained
by the JKR model (the ones presented and discussed in the main text) in table S2.

Table S2: Viscoelastic parameters obtained by fitting the experimental data with a GM2
model in combination with JKR contact mechanics and compared to parameters obtained
from combining a GM2 model with Hertz contact mechanics using JKR IC as well as Hertz
IC

JKR Hertz (JKR IC) Hertz (Hertz IC)

PC

E∞ / GPa 1.52± 0.18 1.43± 0.18 1.99± 0.31

E1 / GPa 1.62± 0.84 4.93± 2.59 0.80± 0.64

E2 / GPa 0.62± 0.21 1.43± 0.49 0.56± 0.32

η1 / GPa s 0.52± 0.22 0.85± 0.31 0.62± 0.24

η2 / GPa s 7.2± 4.2 13.5± 5.8 7.2± 3.9

PMMA

E∞ / GPa 2.33± 0.26 2.23± 0.25 3.14± 0.36

E1 / GPa 1.51± 0.71 4.16± 2.51 0.74± 0.67

E2 / GPa 0.81± 0.35 2.08± 0.76 1.42± 0.97

η1 / GPa s 1.31± 1.22 1.76± 1.42 0.83± 0.67

η2 / GPa s 12.7± 6.8 31.5± 24.8 17.2± 11.6

The parameters obtained by fitting the experimental data with the Hertz-GM2 model
by using the JKR initial conditions (table S2, column two), show the exact same behavior
as was observed for the simulated data: E∞ is slightly decreased compared to the JKR
model, E1 is strongly increased, E2 is increased, η1 is about the same, and η2 is again
strongly increased. This leads to the conclusion that in this evaluation adhesion cannot
be neglected.

By fitting the data with the Hertz model using the Hertz initial conditions (table S2,
column three), E∞ becomes significantly higher compared to the values obtained by the
JKR model. All values do seem plausible and for PC the results are closer to results
obtained by NI (see main text). However, as mentioned above, the initial creep rate δ̇0
had to be adjusted significantly for the fit to converge for the GM2-Hertz model using the
Hertz initial conditions. This behavior is completely consistent with the behavior observed
for simulated data (see section 5.2), where it is directly visible that parameters obtained
this way are incorrect. Thus, adhesion cannot be neglected.
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5.4 Neglecting adhesion: conclusion

From the investigations in this section, it becomes clear that even when the maximum force
used is 5000 nN an adhesion force of 300 nN cannot be neglected. Even an adhesion force as
low as 30 nN would yield parameters that are off by as much as 40%. Interestingly, it was
never possible to fit the simulated data properly with the Hertz model and using the Hertz
initial conditions. Basically, this means that the effect of adhesion has to be acknowledged
(albeit the adhesion being low) in the initial parameters to gain useful results.

6 Sensitivity to input parameters

Here, the influence of slightly deviating input parameters on the determined viscoelastic
parameters is studied. For this purpose, a creep curve is calculated using the JKR+GM2
model. This creep curve is then treated like experimental data and fitted with the
JKR+GM2 model, as described in the main text. However, one input parameter is changed
slightly from the correct value that was used to calculate the curve. The parameters used
to generate this curve were: E∞ = 2.3 GPa, E1 = 1.5 GPa, E2 = 0.8 GPa, η1 = 1.3 GPa s,
η2 = 13 GPa s, Rtip = 350 nm, Ri = 2Rtip, Fad = 300 nN. Parameters that are changed
from the ones stated here are indicated in the text below.

6.1 Adhesion force

The adhesion force is a parameter that is measured during the experiment and is, thus,
subject to some uncertainty. To check the sensitivity of the model to a deviating Fad,
three creep curves with respective adhesion forces of 100 nN, 200 nN, and 300 nN were
generated. Other parameters were as stated above. For evaluating the calculated curves,
the adhesion force is changed by ±10%. The results are presented in table S3. If the
adhesion force is assumed to be off by 10% during evaluation, the resulting parameters are
off by < 10% in the investigated range. The parameter that exhibits the largest relative
deviation is E2 with about 9% at Fad = 300 nN. Increasing the deviation of Fad to 20%,
increases the deviations in the resulting parameters about twofold compared to the 10%
case. While the level of the adhesion force does have an influence on the deviation in the
parameters, it is very low, as can be seen from table S3.

Table S3: Sensitivity of the JKR+GM2 model to the fit input parameter Fad

Fad (correct) / nN 300 200 100

Fad (fit) / nN 300 270 330 200 180 220 100 90 110

E∞ / GPa 2.30 2.29 2.31 2.30 2.29 2.31 2.30 2.30 2.30

E1 / GPa 1.50 1.52 1.47 1.50 1.53 1.47 1.50 1.53 1.47

E2 / GPa 0.80 0.87 0.73 0.80 0.86 0.74 0.80 0.84 0.76

η1 / GPa s 1.30 1.31 1.29 1.30 1.31 1.29 1.30 1.31 1.29

η2 / GPa s 13.0 14.0 12.0 13.0 13.8 12.2 13.0 13.6 12.4

6.2 Initial parameter δ0

Another parameter that is determined from measurements is the initial parameter δ(t =
0) = δ0, which is necessary for numerically solving a differential equation of order ≥ 1. One
curve was calculated to study the sensitivity to δ0, using the parameters exactly as stated
above. The correct value for δ0 is determined using the JKR theory with F = F0 = 50nN
and E∞ as the modulus, which is consistent with the assumption δ̇(t = 0) = 0. This
generated curve is then treated as experimental data and fitted with the JKR+GM2
model described in the main text. The input parameter δ0 is varied by ± 10%, ± 20%, and
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± 30%, other input parameters are kept at the correct value. The results are presented in
table S4.

Table S4: Sensitivity of the JKR+GM2 model to the fit input parameter δ0

δ0 (fit) / nm 1.60 1.82 2.05 2.28 2.51 2.74 2.96

-30% -20% -10% ±0% +10% +20% +30%

E∞ / GPa 2.45 2.40 2.35 2.30 2.25 2.21 2.16

E1 / GPa 1.55 1.56 1.54 1.50 1.44 1.38 1.31

E2 / GPa 0.38 0.55 0.69 0.80 0.89 0.97 1.03

η1 / GPa s 1.34 1.33 1.32 1.30 1.28 1.25 1.22

η2 / GPa s 6.46 9.27 11.4 13.0 14.3 15.3 16.2

The parameters that are affected the strongest by far are E2 and η2. Especially,
underestimating δ0 leads to a large deviation in the aforementioned parameters. If δ0 is
reduced by 30%, an increase of around 50% in E2 and η2 is found. On the other hand, if
δ0 is increased by 30%, E2 and η2 only decrease by around 30%.

6.3 Initial parameter δ̇(t = 0)

The GM2 model results in a differential equation of order 2, thus, also δ̇(t = 0) is needed as
an initial parameter. It was, however, not possible to measure it reliably and was assumed
to be 0, as is described in the main text. Here, 5 different creep curves are calculated
with the parameters stated above, only δ̇(t = 0) is changed, according to the first line in
table S5. These five curves are then fitted by using δ̇(t = 0) = 0 as input.

Table S5: Sensitivity of the JKR+GM2 model to the fit input parameter δ̇(t = 0); all
values are determined by keeping δ̇(t = 0) = 0 during the fit; δ̇(t = 0)=0 of the curves to
be fitted was set to the values given in the first line of the table

δ̇(t = 0) / nm s−1 -0.5 -0.3 -0.1 0 0.1 0.3 0.5

E∞ / GPa 2.30 2.30 2.30 2.30 2.30 2.30 2.30

E1 / GPa 1.47 1.48 1.49 1.50 1.51 1.52 1.52

E2 / GPa 1.16 1.01 0.87 0.80 0.73 0.60 0.47

η1 / GPa s 1.22 1.26 1.29 1.30 1.31 1.34 1.35

η2 / GPa s 18.1 16.1 14.0 13.0 12.0 9.96 7.94

E2 and η2 are affected the strongest when changing δ̇(t = 0), similar to the other cases
studied. For δ̇(t = 0) = ±0.1 nm s−1, the parameters change by < 10%.

6.4 Conclusions

Changing the adhesion force by a certain percentage led to a similar (slightly less) max-
imum relative change in the output parameters in the investigated range. Deviations in
the initial indentation depth δ0 had a higher impact than deviations in the adhesion force.
Especially, underestimating δ0 will considerably affect the output parameters. If an initial
creep rate δ̇(t = 0) of up to 0.1 nm s−1 is approximated by a creep rate of 0 in the evalu-
ation, the output parameters are off by < 10%. This should not be a problem, as creep
rates > 0.1 nm s−1 (i.e., a change in indentation depth that is larger then 1 nm per 10 s) is
easily observable. It is interesting that the parameters that were affected the most were
E2 and η2, by far. The other parameters changed in all the above investigations only by
7% at maximum. To conclude, the most important input parameter to determine is δ0,
the initial indentation depth, followed by the adhesion force.
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7 Force distance plots

In figure S3, force vs. indentation depth plots with considerable plastic deformation (fig-
ure S3a) are compared to ones with only viscoleastic deformation (figure S3b). The former
were used to extract hardness and reduced elastic modulus in an Oliver and Pharr like
approach8,9. The latter are the basis for the measurement of viscoelastic properties as
described in the main text. Please note that not the force vs. indentation depth plots
are fitted to a viscoelastic model but the creep curves (indentation depth vs. time), as is
described in the main text.

PMMA
PC(a) (b)

Figure S3: Force vs. indentation depth plots of (a) AFM based nanoindentation with
considerable plastic deformation and (b) AFM-NI to measure viscoelasticity. The dashed
lines in (a) represent the unloading slopes which are related to the elastic modulus. Please
note the differently scaled axes in (a) and (b).

By comparing figures S3a and b it becomes obvious that the curves recorded with
only viscoelastic deformation present, appear to be much more influenced by noise. The
reason for this is that the curves in figure S3a are recorded with a much larger maximum
indentation depth (between 30 nm and 60 nm) compared to figure S3b (maximum inden-
tation depth < 20 nm). This demonstrates that allowing larger deformations could be
an alternative way to reduce the scattering of the recorded curves, instead of averaging
them. However, a disadvantage of this approach is that tips with larger radius and stiffer
cantilevers would be needed to keep the strain low and provide the ability to generate the
necessary forces.
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