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1 Colloidal system

1.1 Hematite cubes properties

Micrometer sized magnetic hematite colloids are prepared via forced hydrolysis of iron(III)
chloride solutions as described in the Methods section. To exclude the presence of iron
oxide impurities that could contribute to the overall magnetic properties of the parti-
cles, we performed XRD (Figure S1(a)) and Curie balance measurements, confirming
that the particles are composed exclusively of hematite. From magnetization curves (see
Figure S1(b)) we find a magnetic moment per particle of about µexp = 2.8× 10−15Am2

for hematite cubes with edge length 1135 nm. This value is about 8% higher than the
calculated moment (µcalc = 2.6 × 10−15Am2) assuming a spontaneous magnetization of
Ms,hem ≈ 2.2× 103Am−1 for cubes of equivalent size.

XRD measurements were performed on dried hematite at room temperature on a
Bruker-AXS D8 advance powder diffractometer, using Co Kα1,2 radiation (λ= 1.79026 Å).
Peak positions were compared to the International Centre for Diffraction Data (ICDD)
database.

Magnetization curves of hematite cubes were measured with a Micromag 2900 Al-
ternating Gradient Magnetometer (AGM, Princeton Measurements Cooperation). Mea-
surements were performed on a known amount of dried hematite samples. The dipole
moment per particle, µp, was measured using µp = Mr

fN , where Mr is the remanent mag-
netization and f is a factor (0 < f < 1) that accounts for the alignment of the dipoles
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in the sample, here we used f = 0.5 assuming the particles are all oriented randomly in
the 3D sediment.
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Figure S1: (a) Typical magnetization curves from Alternating Gradient Magnetometer measurements
for a sediment of randomly oriented hematite cubes. (b) X-ray (powder) diffraction pattern of bare
hematite cubes confirming the composition of the particles.

2 Interaction energy

2.1 Double Layer Repulsion

Double-layer repulsions between the silica coated hematite cubes were calculated using:

Ue =
2σΨ0

kT
L2e−κx, (S1)

where Ψ0 is the surface potential (50 mV from electrophoresis measurements), L is the
edge length of the cube, x is the separation between the cubes, κ−1 = 3 nm is the
Debye length calculated for a sodium chloride concentration of 10 mM, and σ is the
surface charge defined as: σ = 2εε0kT

e κ sinh eΨ0
2kT , where ε0 is the vacuum permittivity

(ε0 = 8.854× 10−12C2N−1m−2), ε is the dielectric constant of the medium, in this case
water, and e is the elementary charge.

2.2 Dipole-dipole interaction strength

Even in zero-field environment dipolar structures formed by hematite cubes form flexible
but quite strong bonds: single particles are rarely seen for samples at equilibrium, even
at low particle concentrations, and we never observed single particles disconnecting from
clusters suggesting a relatively strong binding energy on the order of at least several kBT.
To estimate the magnetic interaction between two magnetic cubes we used:

Ud = (
~µ1 · ~µ2

r3
− 3

( ~µ1 · ~r)( ~µ2 · ~r)
r5

)
µ0

4πkT
(S2)
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where µ0 is the vacuum permeability (µ0 = 4π × 10−7JA−2m−1), µ1 and µ2 are
the dipole moments of the two interacting particles, in our case µ1 = µ2 = µp,exp =
2.8× 10−15Am2, and r is the centre-to-centre particle distance.

� = 0

� = ⇡/4

� = ⇡/2

� = 3⇡/4

c-axis

[111]

19˚
a b

Figure S2: (a) Computer generated model of a cube with m = 4, where the white arrow indicates
the direction of the dipole moment lying on the plane perpendicular to the c-axis (blue). We assume
the dipole moment to form an angle of α= 19◦ with the closest internal diagonal [111] of the cube.
(b) Dependence of the center-to-center distance (r) on the mutual angle φ for two cubes (edge length
1135 nm coated with a 100 nm thick silica layer and m = 4) exploring all possible orientations in the
plane.

2.3 Total interaction

We can estimate the total interaction energy between two cubes (dimer) confined in 2D
by adding dipolar attractions Equation S2 and the shorter-range repulsive double layer
contributions Equation S1 that arise from charged silica surfaces in water. To predict
the ground state structure of two neighboring dipoles in a dimer, we have calculated all
possible relative dipolar orientations for two cubes (Figure S2(b)) with 1135 nm edge
length coated with an amorphous silica shell 100 nm thick, with shape parameter m = 4
and a dipole moment per particle µp = 2.8× 10−15Am2. The dipole moment was chosen
to be at a tilt angle of α= 19◦ toward the face of the cube to reflect the bulk magnetic
properties of hematite as shown in Figure S2(a). From the calculations in Figure S3
we found that the maximum dipole-dipole interaction is obtained when the dipoles are
arranged in a zig-zag configuration as shown in the inset of the bottom-left plot. This
minimization is only valid for 2D systems where a dimer consists of two cubes in a
face-to-face configuration.

The plot in Figure S4(a) shows the total interaction potential Utot = Ud + Ue (or-
ange) as the sum of dipolar attractions Ud (blue) and double-layer repulsions Ue (purple)
between two cubes confined in 2D. The maximum attraction at contact is on the order
of ∼90 kBT. Growing an amorphous silica shell around the particles allows us to tune
the total interaction potential by effectively increasing the distance between the dipoles
and therefore decreasing dipolar attraction. The plot in Figure S4(b) shows the total
interaction potential curves for magnetic cubes coated with 100, 200 and 300 nm silica
shells.
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Figure S3: Dipole-dipole interactions between two magnetic hematite cubes with shape parameterm = 4
and dipole moment per particle µp = 2.8 × 10−15Am2 oriented at a 19◦ angle with respect to the 111-
direction.
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Figure S4: (a) Double-layer repulsion (purple), magnetic attraction (blue) and total interaction potential
(orange) curves for silica-coated colloidal cubes with edge length 1135 nm and 100 nm silica coating
dispersed in aqueous 10 mM sodium chloride solutions. The curves were calculated for cubes approaching
with parallel faces with the highest attractive energy assuming dipoles pointing with a 19◦ angle with
respect to the 111-direction as shown in the bottom right corner of the graph. (b) Effect of the silica
shell thickness on the total interaction potential.

3 Magnetic field measurements

3.1 Magnetic field setup

Brownian dipolar colloids have the remarkable property to form aggregates, even in the
absence of an applied field when their interaction can overcome thermal fluctuations.
However, significant interactions with the Earth’s magnetic field can also occur when
the particle’s dipole moment is strong enough (µp = 1× 10−15Am2 for an interaction of
about 10 kBT). For our hematite cubes, with µp,exp = 2.8× 10−15Am2 and L = 1.1 µm,
the magnetic interaction energy between the particles and the Earth’s field, which varies
between about 0.02 mT and 0.06 mT depending on the location on Earth, was calculated
using Up,E = −µp,expBE , where BE is the Earth’s magnetic field at the location where
we carried out the experiments. On average, we find an interaction energy between our
particles and the Earth’s magnetic field on the order of 27 kBT, strong enough to observe
Earth-field induced particle and chain alignment, and to inhibit formation of rings and
other zero-field structures.

To study magnetic structures formed by cubes in zero and applied magnetic field,
precise control of the applied field is required, both in magnitude and in direction. For
this purpose we built a set-up using three sets of orthogonally oriented Helmholtz coils,
as shown in Figure S5. The plastic support was 3D-printed to allow precise positioning
of the set-up inside the optical path of our inverted optical microscope, and the coils were
manually winded. The setup and microscope were designed to screw together so that
the eye of the objective, and therefore the part of the sample imaged, was always at the
center of the coils, where the magnetic field is uniform. The current applied to each set
of Helmholtz coils can be precisely controlled electronically and a maximum of about 3 A
can be independently applied to each separate couple of coils. The maximum magnetic
field that can be generated by this magnetic setup is about 18 mT in the z-direction

5



and 1.3 mT in the x- and y-direction. Before imaging, the particles were exposed for
a short time to a strong field (18 mT) in the z-direction, which uniformly distributes
particles throughout the sample. After removal of the z field we can then observe dipolar
assembly of the colloids. This process was repeated every time new settings (different
field directions or intensities) were applied to the sample.
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Figure S5: (a) Custom-made magnetic setup used to control the magnetic field during optical microscopy
experiments. The three sets of coils used to control the magnetic field in the x-, y- and z-directions are
indicated by the arrows. (b) The magnetic setup is situated around the objective of the inverted optical
microscope and it is screwed at the bottom of the objective. This configuration ensures not only the
reproducibility of the measurements, but also that the sample (as indicated by the central arrow) is
always in the center of the setup, where the magnetic field is uniform.

3.2 Tracking of magnetic structures

Our cubic particles can be tracked to perform quantitative studies on dipolar structures.
Since we are dealing with cubic-like particles, we have to optimize the tracking routines.
Here, single cubes, isolated or as part of a chain or structure, are identified using a
circular Hough transform. This recognition procedure is possible because the edges of
the particles imaged by optical microscopy are hazy and their central part is brighter
due to light reflection by hematite; it is therefore possible to overlap the shape of the
particles with a circle. Figure S6(a) shows part of a typical image used for the tracking
of small cubes in the presence of the Earth’s magnetic field.

After all particles are identified, the software caches information on the radius and
position of each particle. The information is used in the third step to identify particles
close enough to be part of the same cluster. In Figure S6(a) each cluster is identified by
a red dot. The tracking procedure is repeated for all the frames in a movie of over 600
frames (the intervals between the frames changes depending on the information needed)
and the information on the length and angle of each chain is extracted in the form of
an angular histogram. An example of angular histogram obtained by tracking chains of
cubes in the presence of the Earth’s magnetic field, can be seen in Figure S6(b).
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Figure S6: Original microscope image used for tracking (a). The center and the radius of every particle
are recognized using a Hough circle transform and chains are identified from particles that are close to
each other. The whole tracking process is repeated for a large number of frames (more than 600) to
account for fluctuations, and the final direction of each chain is computed in an angle histogram (b)
that shows the average preferential orientation of the chains. (c) Schematic representation of the vectors
involved in the measurement of direction and magnitude of the Earth’s magnetic field (~b).

3.3 Procedure for cancelling the Earth’s magnetic field

Cancelling the Earth’s magnetic field accurately and reproducibly is not trivial. Every
microscopy set-up is different and located at different orientation with respect to the
Earth’s field lines; in addition, there might be other elements in the surroundings of
the microscope that produce a magnetic field, effectively disturbing the measurements.
Because the Earth’s field is very weak (typically between 0.02 mT and 0.06 mT) and
easily influenced by, for instance, electronics in the surrounding, applying a Gaussmeter
probe is not an option. We have developed a technique to precisely cancel the Earth’s
magnetic field (or any other residual field) using our colloidal particle as "probes" for the
determination of the strength and direction of the magnetic field lines. When hematite
particles are exposed to the Earth’s magnetic field, they form chains that align parallel
to the field lines. If we consider a scenario where the applied field ( ~B) is zero (Figure
S6c, left) then the chains align parallel to the Earth’s field which form an angle θ with
the applied field. To generalize the procedure, we assume that θ is unknown.
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If we consider as a reference frame the plane formed by the applied field and its
perpendicular direction, then by definition −π

2 < θ < +π
2 , as shown in Figure S6(c). The

Earth’s field vector ~b can therefore be written as:

~b =

(
~bcosθ
~bsinθ

)
(S3)

When the applied field is not zero, the chain of particles align in a direction that is the
sum of the applied field ~B and the Earth’s field as shown in Figure S6(c). The total field
that the particles experience is:

total field =

(
~B +~bcosθ
~bsinθ

)
(S4)

Because we know the direction and magnitude of the applied field ~B the angle φ can be
written as:

tanφ =
~bsinθ

~B +~bcosθ
(S5)

The angle θ can be experimentally measured and the field applied ~B is known, this
equation can therefore be solved for ~b, a vector that represent both magnitude and
direction of the Earth’s field.

4 Bond Angle Analysis and Kinking Criterion

In order to extract kinked conformations from simulation, a strict kink criterion is re-
quired. To that end, we considered only chain structures; we aimed to isolate all kinked
chains in the system and neglect clusters with three-fold, and higher, coordinated par-
ticles. We extracted all the bond angles φ along the length of identified chain clusters,
from which we constructed the probability density function, f(φ). In the interest of a
further dipole orientation comparison we performed this bond angle analysis for the two
additional dipole orientations as well, further emphasizing the uniqueness of the face
tilted orientation. The f(φ) for each dipole orientation are plotted in Figure S7 ordered
as face-tilted, [111], and edge-tilted, from top to bottom respectively. One should note
the use of a log-scale for f(φ). The pink regions of the plots are the bond angle his-
tograms binned according to the Freedman-Diaconis rule. These distributions were fit to
a bimodal normal distribution of the form:

N(φ̄1, σ
2
1, φ̄2, σ

2
2) = aN(φ̄1, σ

2
1) + bN(φ̄2, σ

2
2) (S6)

where N(φ̄i, σ
2
i ) = e−(φ−φ̄i)2/2σ2

i /(2πσ2
i )

1/2 with mean φ̄i and variance σ2
i ; a and b are

pre-factors, which determine the mixing of the distributions. The bimodal distribution
fits are depicted in Figure S7 as blues curves; the component unimodal distributions are
shown as the green curves in the upper plot simply to illustrate the kink definition we
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have used and shall define shortly. On first inspection, these angular distributions closely
reflect the snapshot comparisons we made earlier, the dipolar orientations [111] and edge-
tilted are extremely similar, whilst the face-tilted orientation is completely distinct. Each
distribution is characterized by two maxima; for [111] in the middle plot these maxima
are similar in height, a fact that must stem from the high symmetry of this orientation.
The maximum at ∼ 180◦ corresponds to linear chain segments and the second maximum
to the neighbor-to-neighbor offset that can occur along the chains. Similar behavior is
seen for the edge-tilted orientation, where a slight preference for linear segments has
developed indicated by the increase in height of the ∼ 180◦ peak, this reflects the re-
emergence of extended chain structures due to the dipolar tilt. Focusing on the upper
plot, the orientation of primary interest, we find in contrast to the lower two plots one
distinct global maximum at bond-angles (∼ 180◦) indicating a marked preference for
linear chain segments, whilst the significantly lower local maximum corresponds to the
kink chain segments that we have observed. We chose to define the boundary between
linear and kinked chain segments as the intersection point of the two constituent normal
distributions in our bimodal fit. As indicated on the plot, this angle φcrit lies at the
intersection of the two green curves, the corresponding angle is approximately 157◦.
Therefore the kink criterion was set as such: any chain cluster containing at least one
bond angle less than φcrit is considered to be composed of at least one kink deformation;
clusters with no angles less then φcrit are considered to be defect free. The most probably
kink angle found here, φkink = 143.9◦, correlates well with that derived in the manuscript
from chain-field orientations.

5 Alternative dipole moment orientations

The experimentally determined dipole moment orientation is found at a 12◦ tilt from
[111] toward the particle face and is confirmed by the striking agreement between exper-
imental observations and simulations. However, to confirm that the specific tilt toward
the particle face is indeed responsible for the observed phase behavior, we exploit the
ability to re-orient the dipole within the cube in simulations. Specifically, we investigate
two different orientations of the dipole: a conventional [111] orientation and an orienta-
tion with a −12◦ tilt angle from [111] towards the particle edge, as shown in Figures S8(a)
and S8(e), respectively.

Figures S8(b-d) show the obtained structures for the dipole along the [111] orientation.
We find an appreciable difference in the self-assembled structures compared to those in
Figure 3 (main text). At zero-field, the structures posses a much more close-packed
geometry, with primarily compact agglomerations of four particle rings, which are known
to constitute the ground state of such particles. Moreover, chain-like structures observed
in the experimental case are not evident. In the weak and strong field regimes there
is a complete absence of the kinking phenomenon (Figures S8(c,d). We actually find a
scenario where particles are offset along a chain from neighbor to neighbor. Furthermore,
one also notices that the structure of the crystalline assemblies is different, appearing to
be rather more hexatic in nature. Figures S8(f-h) show the obtained structures for the
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Figure S7: Angular probability density functions, f(φ), of all bond angles in chain structures for the
respective systems. Each distribution refers to a different dipole orientation as indicated by the visual-
ization to the left of each plot; the order from top to bottom is face-tilted, [111] and finally edge-tilted.
The symbol and curve identifications are given in the legend appearing at the very top of the figure.
The histograms are binned according to the Freedman-Diaconis rule. The determined kink criterion
φkink and the most probably kink angle φkink, are indicated on the face-titled plot by the black lines and
accompanying annotations.

dipole with a −12◦ edge-tilted orientation. Here we find a very similar scenario to the
[111] dipole, with compact agglomerations at zero-field and a slight offset between nearest
neighbors. The only exception arises at zero-field (Figure S8(f)) where chain structures
seem to have been stabilized by the re-introduction of the tilt.

Clearly, these two ‘incorrect’ orientations have markedly more similarities between
themselves than with the experimental structures. From this we can conclude that the
tilting of the dipole from [111] has a significant effect on the self-assembly protocol active
in the system and it matters in which direction this tilt is directed. One can speculate
about the significance the size of the tilt angle has. With this in mind, we have included
a snapshot (Figure S8(i)) for a system with α = 19◦ (based on the c-axis orientation of
hematite) in the strongest field. Kinked structures are still observed, but they are less
prevalent and of a slightly different structure to those of α = 12◦. It follows, there can
only be a relatively narrow band of face oriented tilt angles for which kinking is observed,
which is further supported by the fact that if this tilt angle becomes too large (θ → 52.5)
the system will tend to a [001] orientation, which will most certainly favor collinear chain
configurations.
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Figure S8: The dipolar orientation valid for each column of snapshots is indicated in (a) and (e) for [111]
and 12◦ edge-tilted from [111] respectively. (b-d & f-h) Simulations snapshots of cubes with the indicated
dipole orientation alongside dipole configurations of selected clusters (insets). (i) Snapshot exploring the
effect of an increased face-tilted angle of 19◦. Simulation parameters: surface density, ρ∗s=0.05 for (b-d
& f-i); Langevin parameters, α∗L = 0 for (b,f), α∗L = 18 for (c,g) and α∗L=41 for (d,h,i); propagation
time, t∗ = 5 × 104∆t∗.
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6 Kink formation: an analytical perspective

In the following analysis we are considering individual clusters as isolated entities of
given size n. That is to say no assumptions are made about the aggregation of particles
to the chain. The equilibrium for this process if highly skewed in favour of association,
dissociation is extremely unlikely. When the non-equilibrium nature of the system was
discussed in the manuscript, it is in reference to this fact. The treatment in the fol-
lowing section can be viewed in the first instance as athermal and combinatorial. The
model considers reconfigurations within chains, where the deformations involved are at
a significantly lower energy scale in comparison to bond formation. Thus, the thermal
fluctuations, certainly at elevated temperatures, are sufficient to induce changes in state.
The thermal component of the problem is introduced implicitly via a fitting procedure at
each temperature separately. Whereby, the effects of the thermal agitation are implicitly
accounted for.

6.1 Single Chain Partition Function

As a starting point for the following model we posited that the energy of a chain of n
hematite cubes U∗k (n), is the sum of a straight chain contribution U∗0 (n) and an energy
penalty term relating to the number of kinks in the chain, k. This is denoted as,

U∗k (n) = U∗0 (n) + kδU∗, (S7)

where δU∗ is the energy cost of a single kink. Defined in this way we encapsulate all
of the kink induced changes in the interparticle interactions along the chain length into
δU∗. The straight chain contribution can be described for a chain size n as follows,

β∗U∗0 (n) =
[
1− 3 cos2(θ)

]
λ∗

n−1∑
i=1

n− i
i3

, (S8)

where all pair interactions along the chain are accounted for. Due to the assumption
inherit to the model, the explicit dependence of this energy factor cancels out when
considering parameters related to probability. The angle θ is equivalent to that defined
in the manuscript, i.e. the orientation of the chain backbone with respect to the dipole
orientations (field direction). This angle is temperature dependent. In doing so, we are
assuming that the energy penalty associated with successive kink formation is constant,
and independent of the location of a kink along the chain. Furthermore, we are also
assuming that multiple kinks in a single chain do not interact with one another. We can
write the corresponding n-particle chain partition function as,

Z(n) =

n−2∑
k=0

(
n− 2

k

)
e−β

∗U∗k (n), (S9)

noting that β∗ = (T ∗)−1. This summation is over all possible configurations of straight
and kinked structures, noting that the maximum number of kinks in a single chain is
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(n− 2) . Substituting for U∗k (n) and rearranging yields the following:

Z(n) =
n−2∑
k=0

(
n− 2

k

)
e−β

∗[U∗0 (n)+kδU∗],

=

n−2∑
k=0

(
n− 2

k

)
e−β

∗U∗0 (n)e−β
∗kδU∗ , (S10)

= e−β
∗U∗0 (n)

n−2∑
k=0

(
n− 2

k

)
(e−β

∗δU∗)k

In the interest of compactness we made the following identifications: w0 = e−β
∗U∗0 (n), the

Boltzmann weight of a straight chain configuration, and wδ = e−β
∗δU∗ for the Boltzmann

weight of the kink energy penalty. This allows us to write the partition function as,

Z(n) = w0

n−2∑
k=0

(
n− 2

k

)
(wδ)

k. (S11)

For the final step we turn to the binomial theorem, which for a positive integer N is
written in the form,

(a+ x)N =

N∑
k=0

(
N

k

)
xkaN−k. (S12)

Applying Equation S12 to Equation S11 allows us to write,

Z(n) = w0(1 + wδ)
(n−2). (S13)

6.2 Probability

Having computed the single chain partition function we can now compute the probabili-
ties of the collection of states we are interested in. These are the probability of a straight
configuration, p0(n), and the probability of a chain having at least one kink, pk>0(n). In
general the probability for the scenarios such as these can be expressed as,

pk(n) =

w0

k∑
k′

(
k
k′

)
(wδ)

k′

Z(n)
, (S14)

where k is the maximum kink size under consideration, k′ denotes the summation index,
the initial value of which depends on the range of kinks considered. For the case of a
straight chain the summation disappears as we are only considering k = 0, the probability
reduces to,

p0(n) =
w0

Z(n)
,

=
w0

w0(1 + wδ)(n−2)
, (S15)

= (1 + wδ)
(2−n).
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For the probability of a chain having at least one kink, given that the following constraint
is active,

p0(n) + pk>0(n) = 1, (S16)

we can trivially read off the probability,

pk>0(n) = 1− p0(n) = 1− (1 + wδ)
(2−n). (S17)

This is consistent with Equation S14 for a summation range of k′ ∈ (1, n− 2).

6.3 Entropy

With the probabilities of the various states established we can move to an estimation of
the entropy of these states. According to the standard statistical mechanical definition
of entropy we can write,

S∗ = −
Ω∑
i

pi ln pi, (S18)

where S is the total system entropy, Ω is the total number of microstates of the system,
and pi is the probability of a microstate i being occupied. For our system of kinked and
straight chains we can recast this as follows,

S∗k(n) = −
k∑

k′=0

(
k

k′

)
pk′(n) ln [pk′(n)], (S19)

The single microstate probability pk′(n), can be written as,

pk′(n) =
w0(wδ)

k′

Z(n)
=

(wδ)
k′

(1 + wδ)(n−2)
. (S20)

Hence, the entropy of the straight chain configurations can be found by considering
S∗k=0(n), where no summation is required,

S∗0(n) = −p0(n) ln [p0(n)],

= −
[

1

(1 + wδ)(n−2)

]
ln

[
1

(1 + wδ)(n−2)

]
, (S21)

= (1 + wδ)
(2−n)(n− 2) ln (1 + wδ).

Whereas for kinked chains we have a slightly more complicated expression, which after
a number of algebraic manipulations reduces to the following,

S∗k>0(n) = −
n−2∑
k′=1

(
n− 2

k′

)
pk′(n) ln [pk′(n)],

= −
n−2∑
k′=1

(
n− 2

k′

)
(wδ)

k′

(1 + wδ)(n−2)
ln

[
(wδ)

k′

(1 + wδ)(n−2)

]
, (S22)

=
(2− n)wδ lnwδ

(1 + wδ)
− (n− 2) ln (1 + wδ)(1 + wδ)

(2−n) − (2− n) ln (1 + wδ).
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At which point we have arrived at an estimation of the entropy for both sets of structure
types, which are required for the following section.

Before to moving on, it is beneficial to consider the asymptotic behaviour of these
entropy expressions. In the limit of δU∗ → 0, i.e. kink formation incurs no energetic
cost, the Boltzmann weight of the kink penalty wδ = e−β

∗δU∗ → 1. Consequently, the
entropy contributions reduce to,

lim
wδ→1

S∗0(n) = 2(2−n)(n− 2) ln (2), (S23)

lim
wδ→1

S∗k>0(n) =
[
1− 2(2−n)

]
(n− 2) ln (2), (S24)

which are the functions one would derive if only the combinatorics of the problem were
considered. The combinatorics essential define the shape of the entropy curves however,
inclusion of an explicit kink energy penalty facilitates the fine-tuning required to allow
a comparison with simulated data. At the opposite end of the scale, in the limit of
δU∗ → ∞ kink formation is prohibited, and the Boltzmann weight of the kink penalty
becomes wδ = e−β

∗δU∗ → 0. As a result, the straight chain is the only energetically
viable configuration. Chains have only one accessible microstate, thus limwδ→0 S

∗
0(n) =

0. The entropy of the kinked chains state is somewhat undefined in this context, but
mathematically also reduces to limwδ→0 S

∗
k>0(n) = 0.

6.4 Free Energy

We will conclude this discussion with a look at the free energy distribution in the system.
The total cluster free energy can be calculated using the familiar bridge equation linking
the partition function to this macroscopic property,

β∗F ∗(n) = − lnZ(n),

= − ln
[
w0(1 + wδ)

(n−2)
]

(S25)

= (2− n) ln (1 + wδ)− lnw0.

In a similar manner, we can extract the internal energy from the partition function
accordingly,

β∗U∗(n) = β∗
∂β∗F ∗(n)

∂β∗
= − lnw0 + (2− n)

wδ lnwδ
(1 + wδ)

. (S26)

We can immediately identify and separate the energetic contributions,

β∗U∗0 (n) = − lnw0; β∗U∗k>0(n) = (2− n)
wδ lnwδ
(1 + wδ)

, (S27)

corresponding to straight chains and an excess due to kinking respectively. At this point
we have all the pieces to perform a decomposition of the free energy into these two
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portions,

β∗F ∗(n) = β∗F ∗0 (n) + β∗F ∗k>0(n), (S28)
where

β∗F ∗0 (n) = β∗U∗0 (n)− S∗0(n), (S29)
β∗F ∗k>0(n) = β∗U∗k>0(n)− S∗k>0(n). (S30)

All that remains to be done is substitute the internal energy and entropy expression,
which yields the following expressions,

β∗F ∗0 (n) = − lnw0 − (1 + wδ)
(2−n)(n− 2) ln (1 + wδ), (S31)

β∗F ∗k>0(n) = (1 + wδ)
(2−n)(n− 2) ln (1 + wδ) + (2− n) ln (1 + wδ). (S32)
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Movie captions

Supporting movie 1

This movie shows small angle X-ray scattering patterns taken at different rotation angles
ω. At ω = 47◦ peaks are enhanced by the form factor and are observed up to the 5th order
in the horizontal and vertical directions and up to the 10th order in all diagonal directions.

Supporting movie 2

This movie shows typical dipolar structures formed by hematite cubes with shape pa-
rameter m = 4 and edge length L ≈ 1135 nm coated with a 100 nm thick layer of silica
shell in zero field environment. The effect of the particle shape on the dipolar structures
is particularly evident in the dynamic behavior of the ten particle ring in the center of
the field of view, which steadily fluctuates between a circular and rectangular loop.

Supporting movie 3

Simulation movie for a quasi-two-dimensional hematite cube (m = 4.0) system com-
prised of 256 particles with a surface density of 0.05 and magnetic coupling parameter of
10. The trajectory shown is at zero-field and runs for a length of 2.5×105 time-steps. We
have duplicated the simulation box in order to clearly visualize the dipole orientations
in the left-hand replica.
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