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A. Density functional

Let us consider a single charge-regulated wall placed at z = 0 in contact with an electrolyte

solution of bulk ionic strength I and spanning the space z > 0. The charge density at the

wall is denoted by σ and the dimensionless charge density is given by

σ∗ =
a2σ

e
= η − 1

Θ
. (1)

Please note that all variables used here and in the remainder have the same meaning as

defined in the main text. After subtracting the bulk contribution from the grand potential

functional Ω corresponding to Eq. (2) of the main text and afterwards dividing by the surface

area A of the wall one obtains

β∆Ω (σ∗)

A
=−

∞∫
0

dz

[
2I (cosh (ψ (z))− 1) +

ε

2βe2
(ψ′ (z))

2

]
+
σ∗ψ (0)

a2

+
1

a2

(
−αη − χ

2
η2 + η ln η + (1− η) ln (1− η)

)
, (2)

where the dimensionless electrostatic potential ψ satisfies the PB equation

ψ′′ (z) = κ2 sinh (ψ (z)) (3)

subjected to the Dirichlet boundary condition ψ(∞) = 0 and to the Neumann boundary

condition

ψ′(0) = −βeσ
ε

= −βe
2

εa2

(
η − 1

Θ

)
= −βe

2σ∗

εa2
. (4)

As usual ψ′ and ψ′′ denote single and double derivatives with respect to z, respectively, and

η = σ∗ + 1
Θ

according to Eq. (1).

B. Grahame equation

Multiplying both sides of Eq. (3) by ψ′ one obtains

ψ′ψ′′ = κ2 sinh (ψ)ψ′,

which can be rewritten as

1

2

(
(ψ′)

2
)′

= κ2 (cosh (ψ))′ . (5)
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Integrating Eq. (5) with respect to z and using ψ (∞) = ψ′ (∞) = 0 gives

1

2
(ψ′)

2
= κ2 (cosh (ψ)− 1) , (6)

which leads to

2I (cosh (ψ)− 1) =
ε

2βe2
(ψ′)

2
. (7)

For z = 0, i.e., at the wall, Eq. (6) gives the Grahame equation [1]

κ2 (cosh (ψ(0))− 1) =
1

2
(ψ′(0))

2
=
β2e2σ2

2ε2
, (8)

and therefore,

ψ(0) = sign (σ) arcosh

(
1 +

β2e2σ2

2ε2κ2

)
. (9)

The sign of σ and σ∗ are the same according to Eq. (1) and for brevity we define the

dimensionless parameter λ = βe2

4εκa2
. With these, Eq. (9) can be rewritten as

ψ(0) = sign (σ∗) arcosh
(
1 + 8λ2 (σ∗)2) . (10)

C. Electrostatic potential

The PB equation for our setup is analytically solvable and its solution is well know [2, 3]:

ψ(z) = 4 artanh (γ exp (−κz)) ; γ = tanh

(
ψ(0)

4

)
. (11)

Taking the derivative with respect to z, one obtains

ψ′(z) = −4κγ
exp (−κz)

1− γ2 exp (−2κz)
. (12)
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Therefore,

∞∫
0

dz (ψ′(z))
2

= 16κ2γ2

∞∫
0

dz
exp (−2κz)

(1− γ2 exp (−2κz))2

= 8κ

∞∫
0

dz
2κγ2 exp (−2κz)

(1− γ2 exp (−2κz))2

= 8κ

∞∫
0

dz

(
d

dz

−1

1− γ2 exp (−2κz)

)

= 8κ

∣∣∣∣ −1

1− γ2 exp (−2κz)

∣∣∣∣∞
z=0

= 8κ

(
−1 +

1

1− γ2

)
=

8κγ2

1− γ2
. (13)

The parameter γ is determined by using the boundary condition relating the electric dis-

placement vector to the charge density at the wall. Combining Eqs. (4) and (12), one

obtains

ψ′(0) = −4κ
γ

1− γ2
= −βeσ

ε
, (14)

which leads to

γ

1− γ2
=
βe2σ∗

4κεa2
= λσ∗. (15)

Solving Eq. (15) for γ and inserting it in Eq. (13), one finally arrives at

∞∫
0

dz (ψ′(z))
2

= 4κ

(
−1 +

√
1 + 4λ2 (σ∗)2

)
. (16)

D. Grand potential

Using Eqs. (7) and (10) in Eq. (2), one can write

β∆Ω (σ∗)

A
=−

∞∫
0

dz
ε

βe2
(ψ′)

2
+
σ∗

a2
sign (σ∗) arcosh

(
1 + 8λ2 (σ∗)2)

+
1

a2

(
−αη − χ

2
η2 + η ln η + (1− η) ln (1− η)

)
. (17)
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Further, using Eq. (16), Eq. (17) can be rewritten as

β∆Ω (σ∗)

A
=

1

a2

[
1

λ

(
1−

√
1 + 4λ2 (σ∗)2

)
+ |σ∗| arcosh

(
1 + 8λ2 (σ∗)2)

− αη − χ

2
η2 + η ln η + (1− η) ln (1− η)

]
, (18)

where the relation 4κεa2

βe2
= 1

λ
is used.

E. Symmetric charge interval (Θ = 2)

As mentioned in the main text, Θ = 2 corresponds to a symmetric charge interval. For

this case, η = σ∗ + 1
2

according to Eq. (1) and using this, Eq. (18) can be written as:

β∆Ω̃ (σ∗) =
1

a2

[
1

λ

(
1−

√
1 + 4λ2 (σ∗)2

)
+ |σ∗| arcosh

(
1 + 8λ2 (σ∗)2)

− α
(

1

2
+ σ∗

)
− χ

2

(
1

2
+ σ∗

)2

+

(
1

2
+ σ∗

)
ln

(
1

2
+ σ∗

)
+

(
1

2
− σ∗

)
ln

(
1

2
− σ∗

)]
, (19)

where ∆Ω̃ (σ∗) = ∆Ω(σ∗)
A is the free energy per unit surface area. Clearly, β∆Ω̃ (σ∗) in

Eq. (19) is symmetric about σ∗ = 0, i.e., β∆Ω̃ (−σ∗) = β∆Ω̃ (σ∗), provided the condition

(2α + χ)σ∗ = 0 (20)

is fulfilled. According to this condition, on the line χ = −2α two states with σ∗1 and σ∗2 = −σ∗1
correspond to the same value of β∆Ω̃(σ∗). Therefore, if a state with σ∗1 corresponds to the

global minimum of β∆Ω̃(σ∗), there will be another state with σ∗2 = −σ∗1 with the same

minimum, i.e., the two states with σ∗1 and σ∗2 coexist. As shown in Fig. 3 of the main text,

for α & −14 and χ = −2α the global minimum corresponds to σ∗ = −σ∗ = 0 (see Fig. 3(a))

whereas for α . −14, it shifts to σ∗1 & −1
2

and σ∗2 = −σ∗1 . 1
2

(see Fig. 3(b)).
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