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I. Movie

The file “movie.wmv” shows a movie of the formation of the zigzag disclination line. A
constant flow from left to right is present while the electric field strength is continuously
increased from 0 to 1.5 V/µm. The microchannel and the experimental conditions are
the same as shown in Figure 4 of the main manuscript.

II. Jones matrix formalism

The Jones matrix formalism [1] relates the electric field ~Eout of a lightwave which has

transmitted an optical system to the electric field ~Ein of the incident lightwave. The
incident (monochromatic) light wave is assumed to possess a well-defined polarization
described by amplitude |E| and phase δ of two orthogonal components, i. e., for a light
wave propagating along z:

~Ein =

(
Ex
Ey

)
with (1)

Ex,y = |Ex,y| exp(ιδx,y). (2)

The electric field of the transmitted light is then obtained as

~Eout = J ~Ein (3)

where the 2 × 2 matrix J (the Jones matrix) is determined by the structure and optical
properties of the transmitted system. In the present study we are using a polarizing
microscope equipped with a additional full wave (λ = 520 nm) plate, i. e., our entire
optical system consists of the polarizer, the liquid crystal sample, the λ plate and the
analyzer. The total Jones matrix J is then obtained as the product of the Jones matrices
of the different components:

J = Janalyzer Jλ plate Jsample Jpolarizer . (4)

The optical properties of our sample change along the light path (z) and we apply the
usual procedure to divide the sample into a large number of thin layers for which constant
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optical properties are assumed. The Jones matrix of our sample is then the product of
the matrices of all layers:

Jsample = Jlayer n . . . Jlayer 2 Jlayer 1. (5)

The general procedure of computing the image of a polarizing micrograph is as follows:
As described in the main manuscript, we define our model sample on a grid with 5123

lattice points, i. e., the xy plane is divided in 5122 squares, corresponding to the pixels of
the final image. For each pixel, the incident light (propagating along z) passes 512 voxels
and we compute the electric field of the transmitted light wave using the product of the
512 Jones matrices of the individual voxels together with the Jones matrices of the three
optical elements (polarizer, λ plate and analyzer) according to eqn (3), (4) and (5).

Our sample is a nematic liquid crystal, a uniaxial material with ordinary and extraordinary
refractive indices, no and ne, and positive birefringence (ne > no). The orientation of
the nematic director ~n (the optical axis) is described by the polar angle θ (angle between
optical axis and z) and the azimuthal angle ϕ (angle between the x axis and the projection
of the optical axis onto the xy plane). We approximate each voxel as a linear retarder with
retardation δ and orientation ϕ. The Jones matrix of an individual voxel, corresponding
to one of the Jlayer i in eqn (5), is then given as [2]:

Jlayer =

(
cos2 ϕ exp

(
ι δ
2

)
+ sin2 ϕ exp

(
−ι δ

2

)
sinϕ cosϕ

[
exp

(
ι δ
2

)
− exp

(
−ι δ

2

)]
sinϕ cosϕ

[
exp

(
ι δ
2

)
− exp

(
−ι δ

2

)]
cos2 ϕ exp

(
−ι δ

2

)
+ sin2 ϕ exp

(
ι δ
2

) ) (6)

whith

δ =
2π

λ
(ne,eff − no)d (7)

where λ denotes the light wavelength, d the thickness of the voxel and ne,eff is given by

1

n2
e,eff

=
cos2 θ

n2
o

+
sin2 θ

n2
e

. (8)

Note that within this treatment an oblique orientation of the optical axis (θ 6= π
2
) affects

only the phase difference δ between ordinary and extraordinary components while other
effects, such as a deflection of the extraordinary ray, are neglected. However, in previous
studies [3, 4, 5] this approach was successfully applied for the numerical calculation of
polarizing micrographs.

Equation (6) provides also the Jones matrix of the λ plate if the phase difference is set to
a constant value δ = 2π

λ
λwp where λwp is the value of the wavelength value of the λ plate

(520 nm in our case).
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The Jones matrix of the polarizer or analyzer is given as:

Jpolarizer =

(
cos2 φ sinφ cosφ

sinφ cosφ sin2 φ

)
(9)

with φ denoting the angle between the polarizer axis and the x axis.

Using the above equations and the refractive index values no(λ) and ne(λ) reported for

5CB [6], we calculate, for a given model sample, for each pixel the transmitted field ~Eout

as a function of light wavelength λ in the range between 390 nm and 790 nm and obtain
finally an intensity spectrum I(λ) for each pixel. The last step is then the transformation
of the intensity spectrum to a colour as seen by the human eye. For this purpose, the
intensity spectrum is weighted by three so-called colour matching functions which reflect
the wavelength sensitivity of the optical receptors in the eye. We use the colour matching
functions x̃(λ), ỹ(λ) and z̃(λ) of the CIE 1931 standard observer [7] in order to obtain
the X, Y and Z coordinates in the CIE XYZ colour space:

X =

∫
I(λ)x̃(λ)dλ, (10)

Y =

∫
I(λ)ỹ(λ)dλ, (11)

Z =

∫
I(λ)z̃(λ)dλ. (12)

Comparing the colours of an experimental image with those of a calculated image is
somewhat ambiguous because there are lot of factors which influence the experimental
recording of a colour, e. g., the light source and optical elements, the camera that was
employed, the software which is used to display or print the image, etc. We found it useful
to consider the magenta colour that is obtained in a polarizing microscope with a λ plate
for optically isotropic samples (or without any sample) and we vary the magenta colour
which is computed by the Jones matrix formalism until it coincides, as judged by the eye,
with the experimental magenta. This variation is done by adjusting the spectrum of the
incident light ~Ein : we assume a shape of the spectrum corresponding to the black body
radiation and vary the temperature.

A basic test of our implementation of the Jones matrix formalism is the computation of a
Michel-Lévy Chart, i. e., the sequence of interference colours produced by a birefringent
layer in a polarizing microscope with increasing layer thickness. The obtained result (see
Fig. S1) agrees well with the expectation. Another test is the comparison with an ex-
perimental micrograph obtained for a liquid crystal sample the structure of which is well
known. Figure S2 (left) shows a micrograph (crossed polarizers with diagonal λ plate) of a
5CB droplet (diameter 46 µm) floating in an aqueous surfactant solution. The surfactant
induces homeotropic anchoring of the nematic director at the droplet surface resulting
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Figure S1: Calculated Michel-Lévy chart.

Figure S2: Experimental (left) and calculated (right) micrograph (crossed polarizers with
diagonal λ plate) of a 5CB droplet with 46 µm diameter.

in a radial director field with a single point defect (radial hedgehog) in the center of the
droplet. Using the refractive indices of 5CB we obtain a calculated image (Fig. S2, right)
which agrees reasonably well the experimental one.

For the calculation of the droplet image (Fig. S2, right), refraction of the transmitted light
at the curved droplet surface was taken into account, assuming a mean refractive index for
both ordinary and extraordinary components. For the calculation of the micrographs of
the present study, where the sample was confined between plane boundaries perpendicular
to the incident light, we assumed a light path strictly parallel to z, neglecting a possible
deflection of the extraordinary component (i. e., the birefringence enters only via the
phase difference between ordinary and extraordinary components into the calculation).
Figure S3 shows a schematic cross section of the model sample used for the calculation of
the micrographs in the presence of a large electric field inducing the zigzag structure (see
Fig. 15 of the main manuscript).
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Figure S3: Schematic cross section of the model sample used for the Jones matrix calcu-
lations of the micrographs shown in Fig. 15 of the main manuscript. The lower boundary
(blue) imposes planar anchoring along x, the other boundaries impose homeotropic an-
choring. In the presence of an electric field (along x), the disclination line (along y,
red dot) is located near the top wall at a distance dtop . In a volume with cross section
2dtop × (w − 2lu) (w denoting the width of channel), the director field is determined by
the twist disclination (eqn (2) and (4) of the main manuscript), in the large remaining
part of the channel volume (marked in light blue) the director is assumed to be parallel
to the field, i. e., parallel to x, with the exception of a thin transition layer at the top
wall where the anchoring condition (along z) has to be met.
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