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I. CHARACTERIZATION OF THE ACTIVE HYDRODYNAMICS

In the following we further characterize the fluid dynamics and the interactions mediated by the hydrodynamics in
our microswimmer model.

A. Flow field scaling

In unbounded space, the fundamental solutions of the Stokes equation under point-like forcing has generally an
algebraic decay with distance. It is therefore important to verify that our model reproduces such algebraic decay of
the velocity over some interval of distances. Figure S1 shows the scaling behavior of the flow field behind both puller
and pusher-type swimmers. In addition to the simulated data the theoretical prediction for a pusher (force dipole)
and puller (three stokeslets), as well as the respective scalings are displayed. We find a good agreement with the
theoretical prediction and the respective scaling laws.
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FIG. S1. Scaling behavior of the flow field behind (a) a pusher and (b) puller microswimmer. Blue circles show the numerical
calculations, yellow continuous lines show the theoretical prediction of (a) a force dipole and (b) three Stokeslets, and green
dashed lines show the expected power-law scaling for (a) 1/r2 and (b) 1/r3.

B. Two particle interactions

To characterize the two-particle interactions of our model, we first simulate two swimmers starting in a parallel
configuration e1 · e2 = 1, for initial center-of-mass (CoM) to center-of-mass distances dCoM = 7a and dCoM = 12a.
Second, we simulate two swimmers starting with a relative angle of π/4 and π/2, where the initial distance is
dCoM = 12a.
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In the following, we will show the time evolution of dCoM as well as the orientational correlation function
〈cos θ〉 = 〈e1 · e2〉 for both pusher and puller type swimmers. Additionally, we provide videos of each simula-
tion to help understand the dynamics of the collisions.

a. Parallel configuration with dCoM = 7a. Figure S2(a) shows a scattering event between two pusher-type swim-
mers. The swimmers attract each other and stay in a parallel configuration until the steric interactions reorient
them and they then start diverging from each other. Puller-type swimmers [Fig. S2(b)] immediately turn away from
each other and perform a reorientation of an angle of π such that they are parallel again. Immediately after this, a
secondary collision causes them to turn away from each other and start swimming into different directions. See also
video 2_pusher_d7a.avi for pushers, and video 2_puller_d7a.avi for pullers.
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FIG. S2. Scattering event between two swimmers starting in a parallel configuration, with dCoM = 7a. Solid lines show puller
and dashed lines pusher-type swimmers. (a) Center-of-mass to center-of-mass distance of the two swimmers. (b) Orientational
correlation of the swimmers.

b. Parallel configuration with dCoM = 12a. Figure S3(a) shows a scattering event between two pusher-type
swimmers. The pushers attract each other and stay in a parallel configuration until the steric interactions reorient
them and they then start diverging from each other. Puller-type swimmers [Fig. S3(b)] quickly reorient away from
each other and become parallel again, assuming a configuration in which one swimmer is behind the other.

For the same initial configuration we also computed the flow field, which can be seen in Fig. S4. The pusher-
type swimmers have almost a stagnation point between them, which gives a relative attraction and corresponding
flow lines favor a parallel configuration. This is in accordance with the behavior seen in Fig. S3(a) and the video
2_pusher_d12a.avi. Puller-type swimmers exhibit a region with very high velocity between them, favoring a reori-
entation as seen by the orientational correlation function in Fig. S3. The configuration in which the swimmers are
behind each other is assumed because of the very low flow velocity at the point x = 0a, y = −10a. See also video
2_pusher_d12a.avi for pushers, and video 2_puller_d12a.avi for pullers.

c. Relative angle π/4 with dCoM = 12a. Figure S5(a) shows a scattering event between two pusher-type swim-
mers. The pushers collide and turn away from each other because of a complex interplay of hydrodynamic and
steric interactions. Puller-type swimmers [Fig. S5(b)] collide, immediately turn away from each other and swim into
different directions. See also video 2_pusher_d12a_45deg.avi for pushers and video 2_puller_d12a_45deg.avi for
pullers.

d. Relative angle π/2 with dCoM = 12a. Figure S6(a) shows a scattering event between two pusher-type swim-
mers. The pushers collide and turn away from each other because of a complex interplay of hydrodynamic and
steric interactions. Puller-type swimmers [Fig. S6(b)] collide, immediately turn away from each other and swim into
different directions. See also video 2_pusher_d12a_90deg.avi for pushers and video 2_puller_d12a_90deg.avi for
pullers.

In summary, the behavior of pusher-type swimmers due to hydrodynamic interactions can be summarized by saying
that they attract each other and align with each other. This behavior is expected, as it is shown experimentally by
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FIG. S3. Scattering event between two swimmers starting in parallel configuration, with dCoM = 12a. Solid lines show puller
and dashed lines pusher-type swimmers. (a) Center-of-mass to center-of-mass distance of the two swimmers. (b) Orientational
correlation of the swimmers.

−15 −5 5 15

x/a

−20

−10

0

10

20

y
/a

(a)

−15 −5 5 15

x/a

(b)

10−3

10−2

10−1

F
lo

w
ve

lo
ci

ty
/√

k
B
T
/m

FIG. S4. Time-averaged flow field generated by (a) two model pushers (b) two model pullers. The swimmers are kept in a
parallel configuration with dCoM = 12a. We show cross-sections on the x-y plane at z = 0. The force strength is f0 = 50kBT/a.
The large central white regions mark the hard cores of the active swimmers. The thin lines with arrows mark the streamlines,
while the color code indicates the magnitude of the flow velocity normalized to the thermal velocity.

[1] and suggested by theoretical studies [2].
The behavior of puller-type swimmers due to their flow field can be summarized as generally dealigning. This

behavior is also suggested by theoretical studies [2]. Interestingly, for an initially close-to-parallel alignment we observe
a chain-like swimming behavior after the scattering event. This chain-like motion is mediated by the three-Stokeslet
flow field.
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FIG. S5. Scattering event between two swimmers starting with a relative angle of π/4 and dCoM = 12a. Solid lines show puller
and dashed lines pusher-type swimmers. (a) Center-of-mass to center-of-mass distance of the two swimmers. (b) Orientational
correlation of the swimmers.
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FIG. S6. Scattering event between two swimmers starting with a relative angle of π/2 and dCoM = 12a. Solid lines show puller
and dashed lines pusher type swimmers. (a) Center-of-mass to center-of-mass distance of the two swimmers. (b) Orientational
correlation of the swimmers.
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II. RESULTS AT LOWER REYNOLDS NUMBER

To test the relevance of the Reynolds number on our results, we perform addition simulations with N = 300− 1560
swimmers. Here, we use a smaller MPCD timestep of δt = 2× 10−3

√
ma2/(kBT ) and an average of 〈NC〉 = 5 MPCD

particles per cell. We note that the small value of MPCD timestep ensures that the fluid remains incompressible. The
resulting Reynolds number is R = 10−3, and the Peclet number is P = 220. Figure S7 shows the resulting standard
deviation of local Voronoi volume σloc compared to standard deviation σrnd of a homogeneous configuration for both
pullers and pusher. For both puller and pusher-type swimmers we find a maximum. Thus, the qualitative behavior
of Fig. 5 in the main text is recovered. We conclude that in the tested regime the Reynolds number has only minor
effects.
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FIG. S7. Standard deviation of local Voronoi volume σloc compared to standard deviation σrnd of a homogeneous configuration.
Global filling fraction is varied, the Péclet number is fixed to P = 220 and the Reynolds number is R = 10−3. Circles are
pusher and squares are puller-type swimmers.

III. BROWNIAN DYNAMICS SIMULATIONS

The Brownian dynamics simulations are carried out with hard spheres, that propel forward with a typical speed v0
along their orientation e [see also [3–6]]. The equation governing the translational motion for the position r reads

dr
dt = v0e+ F /γ + η, (S1)

where F is the force between particles and η is a random white noise with zero mean and 〈η(t)η(t′)〉 = 2DIδ(t− t′).
Here, D = kBT/γ is the translational diffusion constant, which is related to the friction coefficient γ. The potential
between the particles is a Weeks–Chandler–Anderson potential [7]

Φ(rij) = 4ε̃
[(

σ

rij

)12
−
(
σ

rij

)6
]

+ ε̃ (S2)

if rij < 21/6σ, and Φ(rij) = 0 otherwise. Here rij ≡ |ri − rj | is the distance between swimmer i and swimmer j and
ε̃ = 1000kBT is the energy scale. Furthermore, we include orientational diffusion by using

de
dt = ζ × e (S3)



6

where ζ is a Gaussian white noise with 〈ζ(t)ζ(t′)〉 = 2DrIδ(t− t′). Here, the rotational diffusion coefficient is related
to the translational diffusion coefficient by Dr = 3D/σ2. The Péclet number is defined by P = v0σ/D, equivalently
to the definition in the main text.

IV. MULTIPOLE EXPANSION OF HYDRODYNAMIC FORCES AND TORQUES

The hydrodynamic forces and torques in the analytical theory are approximated with two point forces. In addition,
the correlations between noise and hydrodynamic interactions are neglected. Using these approximations, the velocities
induced by swimmer 2 at the position of the front rL1 and back rS1 sphere of swimmer 1 are found from Eq. (10) in
the main text and read

ui (rL1) = f [Oij (rL1 − rL2)−Oij (rL1 − rS2)] e2,j , (S4)
ui (rS1) = f [Oij (rS1 − rL2)−Oij (rS1 − rS2)] e2,j , (S5)

where Oij is the Oseen tensor and e2,j is the orientation of swimmer 2. We now change coordinates in terms of the
hydrodynamic center of the swimmers

eµ = (rLµ − rSµ) /l, (S6)

rCµ = aLrL,µ + aSrS,µ
aL + aS

, (S7)

where µ = 1, . . . , N are particle indices. Equation (S4)-(S5) become

ui (rL1) = f

[
Oij

(
rC12 + aSl

2ā (e1 − e2)
)
−Oij

(
rC12 + l

2ā (aSe1 + aLe2)
)]

e2,j , (S8)

ui (rS1) = f

[
Oij

(
rC12 −

l

2ā (aLe1 + aSe2)
)
−Oij

(
rC12 −

aLl

2ā (e1 − e2)
)]

e2,j , (S9)

where ā = (aS + aL)/2. Equations (S8) and (S9) are now used to compute forces and torques between the particles

∂tr
C
µ = aL∂trLµ + aS∂trSµ

aL + aS

= aLu(rLµ) + aSu(rSµ)
aL + aS

= 1
ζhy

∑
µ6=ν

Fµν , (S10)

∂teµ =
(
eµ ×

∂trLµ + ∂trSµ
l

)
× eµ

=
(
eµ ×

u(rLµ) + u(rSµ)
l

)
× eµ

= 1
ζhy

∑
µ6=ν

τµν × eµ, (S11)

where the last step in both Eq. (S10) and Eq. (S11) implicitly defines Fµν and τµν . In the orientational equation
we projected on the perpendicular part of eµ because |eµ|2 = 1. Physically, this is related to the fact that the two
spheres of one swimmer are connected by a stiff rod. The hydrodynamic friction coefficient is ζhy = 1

6πηā . On account
of the finite extension of our swimmers, we need to consider a multipole expansion of the force and torque defined in
Eq.(S10)-(S11). The multipole expansion of the Oseen tensor is given by [8]

Oij(r + x) =
∞∑
n=0

1
n! (x · ∇)nOij(r). (S12)
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We expand Eq.(S10)-(S11) up to n = 2, which correspond to neglecting terms of order O( 1
r4 ). Therefore, we need the

first two derivatives of the Oseen tensor, which are given by

∂kOij = 1
8πη

[
1
r3 (−δijrk + δjkri + δikrj)−

3
r5 rirjrk

]
, (S13)

∂m∂kOij = 1
8πη

[
1
r3 (−δijδkm + δjkδim + δikδjm)

− 3
r5 (−δijrmrk + δjkrmri + δikrmrj + δmirjrk + δjmrirk + δmkrirj) +15

r7 rirjrkrm

]
, (S14)

where ∂i ≡ ∂
∂ri

. Collecting all terms from the multipole expansion up to O( 1
r4 ), we arrive at the following two-body

expressions for force and torque

F12 =9
4fāl

r̂12

r2
12
Sij(r̂12)e2ie2j −

9
16fl

2∆a 1
r3
12

[r̂12Sijk(r̂12)e2ie2je2k − e2Sij(r̂12)e2ie2j ] , (S15)

τ12 =− 9
4fāl

3 (e1 × r̂12) 1
r3
12
Sijk(r̂12)e2ie2je2k , (S16)

where we used the symmetric traceless tensors

Sij(r̂) =
[
r̂ir̂j −

1
3δij

]
, (S17)

Sijk(r̂) = 5r̂ir̂j r̂k − (δikr̂i + δikr̂j + δij r̂k) , (S18)
and summation over repeated indices is employed.

V. LINEAR STABILITY ANALYSIS

The Smoluchowski equation of our analytical model reads

∂tp =−∇ · [v(c)ep]− 1
ζhy
∇ · (Fhyp)−

1
ζhyl2

(
e× ∂

∂e

)
· τhyp+D∆p+DR

(
e× ∂

∂e

)2
p , (S19)

where p ≡ p(r, e, t), and the force and torque terms are computed using a mean field Ansatz

〈X12〉 =
∫

dr2

∫
de2X12p(r2, e2, t) . (S20)

Using the definitions of the moments for, respectively, the concentration, polarization, and nematicity

c (r, t) =
∫

de p(r, e, t) , (S21)

P (r, t) = 1
c (r, t)

∫
de e p(r, e, t) , (S22)

Q (r, t) = 1
c (r, t)

∫
de
(
e⊗ e− 1

3I
)
p(r, e, t) , (S23)

we can find the following expressions for the hydrodynamic force and torque terms

Fhy,i =9
4fālK

F1
i + 9

16fl
2∆aKF2

i , (S24)

τhy,i =− 9
4fāl

3εimne1me1jK
τ
nj , (S25)

with

KF1
i =

∫
dr2

r̂12i

r2
12
Sij(r̂12)c(r2, t)Qij(r2, t) , (S26)

KF2
i =

∫
dr2

1
r3
12
Sij(r̂12)c(r2, t)Pj(r2, t) , (S27)

Kτ
nj =

∫
dr2

r̂12n

r3
12
Sljk(r̂12)c(r2, t)Qlk(r2, t) . (S28)
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We now compute moment equations using Eq. (S21)-(S23) for the Smoluchowski Eq. (S19)

∂tc =− ∂i (v(c)cPi) +D∆c− 9fāl
4ζhy

KF1
i c+ 9fl2∆a

16ζhy
KF2
i c, (S29)

∂tcPi =− ∂j (v(c)cQij)−
1
3∂i (v(c)c) +D∆cPi −DRcPi −

3lf
40πη

(
4Kτ1

ij (r, t)−Kτ1
ji (r, t)− δijKτ1

mm(r, t)
)
cPj (S30)

∂tcQij =− 2
5 (∂iv(c)cPj)ST +D∆cQij − 4DRcQij −

3lf
8πη

[
Kτ
ij

]ST
c, (S31)

where we use the symmetric traceless part [Yij ]ST = 1
2 (Yij + Yji) − 1

3δijYkk. Note that here we neglected terms of
order O(Q2). We will now linearize these moment equations around the isotropic state

c = c0 + δc ,

P = δP ,

Q = δQ , (S32)

and turn to Fourier space, where the fields are denoted by δc̃, δP̃ , and δQ̃. First, note that all terms of order O(P 2),
O(QP ), and O(Q2) will vanish at our level of approximation. Therefore, there is no contribution from hydrodynamic
forces or torques in the polarization Eq. (S30). Second, the three terms proportional to KF1

i c and KF2
i c, stemming

from the concentration Eq. (S29), and the term proportional to
[
Kτ
ij

]ST
c from the nematic stress tensor Eq. (S31)

require special care in their evaluation. We will treat each of these three terms separately in the following.

A. KF1
i c term

The linearized form of the KF1
i c term is

∂ic
2
0

∫
dr2

r̂12i

r2
12
Sij(r̂12)δQij(r2, t) (S33)

and turning to Fourier space yields

ic20kiδQ̃jkF

[
r̂i
r2

(
r̂j r̂k −

1
3δjk

)]
(k), (S34)

where we used the convolution theorem, and F [h(r)](k) =
∫

drh(r)e−ik·r denotes the Fourier transform of the
function h(r). Without loss of generality we can set k = kez, and using spherical coordinates gives

ic20δQ̃jk

∫ ∞
0

dρ
∫ 2π

0
dϕ
∫ π

0
dθk sin θ cos θ

(
r̂j r̂k −

1
3δjk

)
e−ikρ cos θ = 0 . (S35)

B. KF2
i c term

The linearized form of the KF2
i c term is

∂ic
2
0

∫
dr2

1
r3
12
Sij(r̂12)δPj(r2, t) (S36)

turning to Fourier space and using the convolution theorem yields

ic20kiδP̃jF

[
1
r3
12

(
r̂ir̂j −

1
3δij

)]
(k). (S37)

We can again set k = kez, and by using spherical coordinates we find

ic20δP̃j

∫ ∞
0

dρ
∫ 2π

0
dϕ
∫ π

0
dθk
ρ

sin θ
(
r̂j cos θ − 1

3δj3
)
e−ikρ cos θ = −8

9πc
2
0kP3. (S38)

The integrals were solved using Mathematica (see also the supplementary file Integrals_hydroTerms.pdf).
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C.
[
Kτ
ij

]ST
c term

The term
[
Kτ
ij

]ST
c in its linearized form reads

c20

[∫
dr2

r̂12i

r3
12
Snjm(r̂12)δQnm(r2, t)

]ST
. (S39)

Turning to Fourier space and using the convolution theorem gives

c20δQ̃nmF

[
r̂i
r3Snjm

]
(k). (S40)

This can be evaluated when we use k = kez and spherical coordinates

c20δQ̃nm

∫ ∞
0

dρ
∫ 2π

0
dϕ
∫ π

0
dθ 1
ρ

sin θr̂iSnjm = c20Mij(δQ̃ij), (S41)

where the matrix Mij(δQ̃ij) was evaluated using Mathematica (see also the supplementary file Integrals_hydroTerms.pdf)
to be

(Mij) = 4
5π

 − 2
3
(
δQ̃2,2 + δQ̃3,3

) 2
3δQ̃2,1 −δQ̃3,1

2
3δQ̃2,1

2
3δQ̃2,2 −δQ̃3,2

−δQ̃3,1 −δQ̃3,2
2
3δQ̃3,3

 . (S42)

The linearized equations are then given by

∂tδc̃ =−
[
iki

(
v0c0 − ζc20 + c20

∆al2f
30ηā

)
δP̃i +Dkikiδc̃

]
, (S43)

∂tδP̃i =−
[
ikj (v0 − ζc0) δQ̃ij + iki

1
3

(
v0

c0
− 2ζ

)
δc̃+ (Dkjkj +DR) δP̃i

]
, (S44)

∂tδQ̃ij =−
[
i
2
5 (v0 − ζc0)

[
kiδP̃j

]ST + 3lf
8πη c0Mij(δQ̃ij) + (4DR + knknD) δQ̃ij

]
. (S45)
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