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Supplementary Material

1. Derivation of linear elastic solution

The derivation of the linear elastic solution in the Sec.2 of the paper is given below. As is well known, the

stresses are related to the Airy stress function ¢ by:
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The stress-strain constitutive relation in plane strain is:

E

1+v
E

1+v
E
1_|_V512 =0y,

The strains and displacements are related by
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where: wu,and u, are horizontal and vertical displacements respectively and U,,

Substituting eqn (S1,S3) into eqn (S2), we obtain
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Define the Fourier Transform of a function ¢ by:

L I "¢ (x,)dx,
The Fourier transform the stress components in eqn (S1) are:
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The Airy stress function ¢ is biharmonic, that is,
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Fourier transform the biharmonic equation in x, results in an ordinary differential equationin x, . The

general solution of this differential equation that vanishes at infinity is

Fe (4+ Bx, )efwx2 (s8)

Substituting eqn (S8) into eqn (S6), we obtain
S, = —A? (A + Bx, )efw'¥2
S = [/12 (A+Bx2)—2|/1|B] e (S9a-c)
& =id [—|Z| (A4+ Bx, )+ B] e
The boundary conditions are:
Oy =0y =04y, for x,=0
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In eqn (S10a), o, (xl,x2 = 0’) is the applied normal traction, which in our case is a line force given by

eqn (S10b). For small deformation, the jump in vertical traction is balanced by the surface tension o,

multiply with the surfaces’ curvature. Eqn (S10c,d) imply that the surface is not subjected to shear
traction.

Fourier transforming eqn (54) gives:
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From eqn (S11b) and (S8),
1+v _
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where: i =+/—1. Differentiate (S12a) by x, , we obtain
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Substituting eqn (S12b) into eqn (S11c) and after some algebra, we found

9= 1+v[|/1|(A+Bx2)+(l 2v)B e
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The boundary condition eqgn (510d) and eqgn (S9b) imply
=44 (S14)
The boundary conditions eqn (S10a,b) and (S9a) imply
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With the coefficients of A and B, we can calculate the displacements u, and u, by inverting the Fourier
transform given by eqn (S12a) and eqn (S13). However, the inverse Fourier transform of z%: does not

exist since the displacement at infinity has a logarithmic singularity. We therefore consider

Adp= 19— (517)

where 1% is the transform of the elastic displacement, which is obtained by setting o, = 0 in A and B, this

results in
(l * V)N [(2 2v)| | + xz}e_/l’r2 (s18)

The elastic displacement field corresponding to eqn (S18) can be found in the literature, it is

=2
u® :@{2 (1-v)Inyx +x; - % _2}+C0nst (S19)

7 X +X,

where we have used the following normalization:
n=pAr, x =px, x,=px,z=X+i-X, (520)

Combining eqn (513),(517) and (S18),
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The inverse transform of eqn (521) is
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where the dimensionless functions f* and g are defined in the paper.
The transform of the horizontal displacement is obtained using eqn (S12a) and (515),
(1+v)Nﬁ{ (1-2v)  |I% } e,
i E () nQll) (523)

Inverting eqn (S23), we have

= (l”)N {(1 2045, )m[[if (=) + g (2)] - (1- 2v)tanl[;]} (s24)
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The strains can be obtained using eqn (S3) using (519), (S22) and (S24). After some calculations, they are

&, = (l;;;N{(l 2v+x2)Re|:g(Z)+l f(z)]— 2x2} (525)
&y = (I;E‘;;N{(l 2v— xz)Re[g(z)ﬂ f(z)]+ % 2} (S26)

g, = (1+V)N{ X, X, %, Im[g (z)+i- f(z)}} (S27)
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2. Kink angle versus applied load in the cases of large stiffening surfaces

Fig. S1 plots the kink angle versus the normalized load for surfaces with large stiffening moduli. We
include these results in the Sl because these stiffening moduli may be too large to be realistic. The purpose
of these calculations is to show that for very large surface modulus, the kink angle eventually exceeds the
prediction of linearized theory.
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Fig. S1 Kink angle versus applied normalized applied load in large surface stiffening cases. The dashed line
represents the kink angle predicted by linearized elastic solution, i.e. Eq. (7a) in the paper. The colored
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lines represent the FEM results of different large stiffening parameters.

3. Contour plots of kink angle and maximum vertical displacement versus load and surface stiffening

parameters

Contour plots of kink angle €, (in degrees) and maximum vertical displacement Eﬂﬁf‘,{k) plotted against
normalized load N /o, and dimensionless surface stiffening modulus A/ o, . It shows that for N/,

smaller than 1.5, both the kink angle and the maximum vertical displacement is insensitive to the surface
stiffening modulus (A <80, ). For larger values of N / g, surface stiffening effect becomes increasingly

significant in reducing the kink angle and kink vertical displacement.
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Fig.S2 (a) Contour plot of kink angle 6, in degrees and (b) normalized kink maximum vertical displacement
aﬂiﬁ‘,fk) versus different normalized applied load N /o, and the dimensionless surface stiffening

parameter A/ o, .



