
Supplementary Material

1. Derivation of linear elastic solution

The derivation of the linear elastic solution in the Sec.2 of the paper is given below. As is well known, the 
stresses are related to the Airy stress function  by:

                                                   (S1)22 11 11 22 12 12, , ,        

The stress-strain constitutive relation in plane strain is:

                                                             (S2)
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The strains and displacements are related by

                                           (S3)
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where: and  are horizontal and vertical displacements respectively and . 1u 2u , /u u x     
Substituting eqn (S1,S3) into  eqn (S2),  we obtain
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Define the Fourier Transform of a function  by:

                                                                        (S5)
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The Fourier transform the stress components in eqn (S1) are:

                                               (S6)2
22 11 22 12 2    ,     ,i         % % %% % %

The Airy stress function  is biharmonic, that is,  
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(S7)4 0 

Fourier transform the biharmonic equation in  results in an ordinary differential equation in  .   The 1x 2x

general solution of this differential equation that vanishes at infinity is

                                                                         (S8)  2
2

xA Bx e   %

Substituting eqn (S8) into eqn (S6),  we obtain

                                                     (S9a-c)
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The boundary conditions are:

                                                        (S10a-d)
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In eqn (S10a), 
 
is the applied normal traction, which in our case is a line force given by  22 1 2, 0x x  

eqn (S10b). For small deformation, the jump in vertical traction is balanced by the surface tension  0
multiply with the surfaces’ curvature.  Eqn (S10c,d) imply that the surface is not subjected to shear 
traction.   

Fourier transforming eqn (S4) gives:

                                                        (S11a-c)
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From eqn (S11b) and (S8) , 
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where: .   Differentiate (S12a) by  , we obtain1i   2x
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Substituting eqn (S12b) into eqn (S11c) and after some algebra, we found
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The boundary condition eqn (S10d) and eqn (S9b) imply

                                                                              (S14)B A

The boundary conditions eqn (S10a,b) and (S9a) imply
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where:

                                  (S16)
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With the coefficients of A and B, we can calculate the displacements  and  by inverting the Fourier 1u 2u

transform given by eqn (S12a) and eqn (S13).   However, the inverse Fourier transform of  does not 2u%
exist since the displacement at infinity has a logarithmic singularity.   We therefore consider

  (S17)2 2 2
Eu u u  % % %

where  is the transform of the elastic displacement, which is obtained by setting in A and B, this 2
Eu% 0 0 

results in   
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The elastic displacement field corresponding to eqn (S18) can be found in the literature, it is
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where we have used the following normalization:

                                 (S20)1 1 2 2 1 2,   ,   ,x x x x z x i x        

Combining eqn (S13),(S17) and (S18),  
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The inverse transform of eqn (S21) is

                             (S22)

       
2
2

2 2 2 2
1 2

1
2 2 Re

v N xu v x g z i f z
E x x

  
           

where the dimensionless functions  and are defined in the paper. f g

The transform of the horizontal displacement is obtained using eqn (S12a) and (S15), 
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Inverting eqn (S23), we have
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The strains can be obtained using eqn (S3) using (S19), (S22) and (S24).  After some calculations, they are
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2. Kink angle versus applied load in the cases of large stiffening surfaces

Fig. S1 plots the kink angle versus the normalized load for surfaces with large stiffening moduli.   We 
include these results in the SI because these stiffening moduli may be too large to be realistic.  The purpose 
of these calculations is to show that for very large surface modulus, the kink angle eventually exceeds the 
prediction of linearized theory. 
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Fig. S1 Kink angle versus applied normalized applied load in large surface stiffening cases. The dashed line 
represents the kink angle predicted by linearized elastic solution, i.e. Eq. (7a) in the paper. The colored 
lines represent the FEM results of different large stiffening parameters.

3. Contour plots of kink angle and maximum vertical displacement versus load and surface stiffening 
parameters

Contour plots of kink angle  (in degrees) and maximum vertical displacement plotted against k 2( )
FEM
kinku

normalized load  and dimensionless surface stiffening modulus . It shows that for  0/N  0/ 0/N 
smaller than 1.5, both the kink angle and the maximum vertical displacement is insensitive to the surface 
stiffening modulus ( ).  For larger values of , surface stiffening effect becomes increasingly 08  0/N 
significant in reducing the kink angle and kink vertical displacement.
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Fig.S2 (a) Contour plot of kink angle in degrees and (b) normalized kink maximum vertical displacement k

versus different normalized applied load  and the dimensionless surface stiffening 2( )
FEM
kinku 0/N 

parameter .0/


