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Appendix A
The purpose of this appendix is to introduce the surface tensor decomposition and
applied to express four basic curvatures introduced in section 2: H,K, D, and C.

The four independent basis surface tensors are [23]:
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The matrix representations of the basis vectors in the principal frame are [23]:
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where g is the surface alternator tensor. The tensor basis orthonormality yields the following

results:
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Any 2x2 tensor Z can be expanded as:
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trace diagonal traceless antisymmetric symmetric off- dlagonal
where the subtext identifies the nature of the tensor. A symmetric 2 x 2 tensor diagonal in the

principal coordinate frame simplifies to:
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Using eqn.(A.6), the curvature tensor b can be decomposed into a trace and a deviatoric

curvature tensor: b=HI_ +Dq.

Next we use these results to derive the results in Table 1.
b=HI + Dq; 2H=x +x ;2D=k -k (A.6)
The magnitude of the deviatoric curvature D is a useful non-sphericity index, since for a
sphere D=0. Defining f = HI_-b =-Dq, we find, using b and f, the average H, Gaussian

K , square deviatoric D2, and Casorati C curvatures:
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Appendix B

The purpose of this appendix is to derive equation (13). The co-rotational derivative

[o]
b of the curvature tensor is [29]:

ﬁ:(U-(vsb))-Is+b-bV+(vsvsv)+(w-b—b-W) (B.1)



where U is the tangential velocity vector , V the normal speed, and W the surface vorticity

tensor. Under uniform normal motion (U=0,W =0,V _V =0)we decompose b and find
the kinematics of the three curvatures [14,29]:

#=(’+D*)V, B=2HDV,&=2HKV (B.2 a-c)

To find the astigmatic trajectories we work with {I&, 1§‘} Dividing eqn.((B.2a) with (B.2b):
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Introducing H =uD , leads to:
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whose solution is:

1-u? == B.5
I (B.5)
where m is a shape constant. Replacing H=uD we find:

H?>-D*=K =-mD (B.6)
Using curvatures (k,,k, ), the last equality yields:

m
KK, = E(KZ—KI) (B.7)
Dividing by «,x, we find the astigmatism equation [30,31]:
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Appendix C

The purpose of this appendix is to derive the shape-curvedness kinematics and related

trajectories under astigmatic curvature flow. Using H = Csin (Sn / 2); D =Ccos (Sn / 2)

computing the partial derivatives (8C/8H,6C/8D, 68/8H,88/8D)and replacing in the total

time rate of changes:
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we find eqns. (15 a-b) for the time evolution of Casorati’s curvature and shape. Using

K =-mD as defined in Section 3, the astigmatic flow in the SC morphological space is:
) S
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which leads to the sought after result presented in Section 3.



