Supporting Information

Polyacrylamide "Revisited": UCST-type Reversible Thermoresponsive Properties in Aqueous Alcoholic Solution

Asad Asadujjaman, *a Tiago Espinosa de Oliveira, ^{b, c} Debashish Mukherji, *^b and Annabelle Bertin *a, d

^a German Federal Institute for Materials Research and Testing (BAM), Dpt. 6. Materials Protection and Surface Technologies, Unter den Eichen 87, 12205 Berlin, Germany.

^b Max-Planck Institut für Polymerforschung, Ackermannweg 10, 55128 Mainz, Germany.

^c Institut Charles Sadron, 23 rue du Loess, 67034 Strasbourg, France.

^d Freie Universität Berlin, Institute of Chemistry and Biochemistry–Organic Chemistry, Takustr. 3, 14195 Berlin, Germany.

E-mail: Asad.Asadujjaman@bam.de, mukherji@mpip-mainz.mpg.de, Annabelle.Bertin@bam.de

1. Synthesis

Table S1. Summary of the polymerization conditions for polyacrylamide synthesis.

Sample	M:TTC	Monomer	AIBN	TTC	DMSO	Yield
name		(g)	(mg)	(mg)	(mL)	(%)
PAM ₂₈	50	0.31	4	35	3.5	57
PAM ₄₈	100	0.61	4	35	5.1	53
PAM ₈₃	150	0.92	4	35	7	60
PAM ₁₀₄	200	1.23	4	35	9	54
PAM ₁₇₈	250	1.54	4	35	12	60

Table S2. Summary of the characteristics of the synthesized polyacrylamides.

Sample	$\mathbf{M}_{n^{a}}$	DPa	$M_n{}^b$	M_{w}^{b}	Ð	DP ^b	<i>Т_{СР}</i> (°С)
name	(KDa)		(KDa)	(KDa)	(M _w /M _n)		Water/EtOH
							(50% v/v)
PAM ₂₈	2.1	30	2.0	4.5	2.2	28	8.8
PAM ₄₈	4.2	61	3.4	8.8	2.5	48	12.3
PAM ₈₃	4.9	69	5.9	17.0	2.8	83	16.6
PAM ₁₀₄	7.7	108	7.4	22.9	3.0	104	20.7
PAM ₁₇₈	9.7	136	12.6	39.1	3.1	178	23.2

^a From NMR and ^b from GPC measurements in 0.1N NaNO₃ aqueous solution.

2. Characterization of polymers

Fig. S1 ¹H-NMR spectrum of polyacrylamide measured in D₂O.

Fig. S2 GPC traces of polyacrylamide with various DP. Measurements were conducted using PSS-SUPREMA 10μ VS+30+3000 column and 0.1N aqueous NaNO₃ as an eluent with flow rate of 1.0 mL/min at 25 °C. The calibration standard was PEO in the molecular weight range of 600 to 2.0×10^{6} g.mol⁻¹.

3. DLS results

Fig. S3 Volume distribution of sizes of PAM_{104} in water/alcohol mixtures at fixed polymer concentration of 1 mg/mL below (T= 1°C) and above (T= 50°C) the phase transition temperature. (a) Comparison of different alcohols at fixed alcohol percentage of 45% (v/v) in water/alcohol mixtures. Black (50 °C) and green (1°C) lines for water/MeOH, red (50°C) and blue (1°C) lines for water/EtOH, purple (50°C) and pink (1°C) for water/iPrOH. (b) Comparison of different MeOH percentages in water. Wine (50 °C) and green (1°C) lines for 45% (v/v), red (50°C) and purple (1°C) for 50% (v/v), black (50°C) and blue (1°C) for 55% (v/v); pink (50°C) and olive (1°C) lines for 60% (v/v).

Fig. S4 Volume distribution of sizes of the PAM₁₀₄ at different concentrations in water/EtOH mixture at fixed EtOH content of 50% (v/v) below the phase transition temperature (1 °C). Red line for 0.5 mg/mL, green line for 1 mg/mL and blue line for 2 mg/mL.

4. MD simulations

Fig. S5 Variation of Rg as a function of time at constant temperature of 65°C with varying EtOH concentrations (20 % and 80%).