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We applied a film thickness gauge (SCREEN SPE USA, LLC, Lambda Ace 
VM-1200) to measure the PS layer thicknesses. For the weakly adsorbed layer, the 
measured thickness was 2.41.2 nm; and for the strongly adsorbed layer, the 
measured thickness was 2.70.4 nm, as shown in Figure S1. The results are consistent 
with the reported data in the literatures.S1,S2
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Figure S1. The thicknesses of weakly and strongly adsorbed layers measured by a 
film thickness gauge (each averaged from three independent measurements).

In Figure S2, the interfacial deuterated water (D2O) spectra were shown for both 
the weakly and strongly adsorbed layers in ssp polarization combination. The results 
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indicated that D2O were orderly arranged at the interface for both layers.
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Figure S2. Normalized SFG spectra of the weakly and strongly adsorbed layers on 

sapphire in contact with D2O in the OD stretching frequency range with ssp 
polarization combination. Panel A shows the spectrum of D2O for the weakly 

adsorbed layer and Panel B shows the spectrum of D2O for the strongly adsorbed 
layer. The solid lines were plotted to guide eyes.

We also collected SFG spectrum from the pure sapphire/air interface, as shown 
in Figure S3. A sharp peak located at ~3720 cm-1 was observed, which can be 
assigned to the free OH vibrational mode on the sapphire surface.S3-S5
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Figure S3. Normalized SFG spectrum of pure sapphire in air in OH stretching 



frequency range.

Lorentz equation was used for fitting SFG spectra. When the IR frequency is 

near the vibrational resonance, can be written asS6,S7:(2)
eff
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where represents the nonresonant background contribution. , and represent nr qA qw q

the amplitude, resonant frequency and damping coefficient of the qth vibrational 
mode, respectively. In Table S1, fitting results were listed for the SFG spectra 
presented in the main context. In Table S2, the refractive indices of sum-frequency, 
Vis, and IR beams were listed. In Table S3, the calculated interfacial Fresnel 
coefficients were listed.

Table S1. The fitting results of the SFG spectra presented in the main text.

on sapphire (air) on sapphire (D2O) on sapphire (CCl4)

weakly strongly weakly strongly weakly strongly
q (cm-

1)
q (cm-

1)
Assignment

Assp Assp Assp Assp Assp Assp

2850 10.5 CH2 ss 3.2 6.0 - 5.5 2.8 8.5

2875 12.3 CH3 ss 7.1 5.4 - 3.7 8.5 5.8

2910 10.0 CH 4.0 6.3 - 3.2 2.5 6.0

2935 11.5 CH2 as -7.2 -7.6 - -6.5 -13.4 -10.8

2945 8.0 CH3 Fermi 1.5 - - - - -

3023 9.0 20b

3032 7.0 7a - -5.8 - - - -

3050 6.0 7b - 4.4 - - - -

3065 6.0 2 - 8.8 - - - -

3620 80.0 OH - - - 84.1 - -

3660 80.0 OH 53.2 110.0 - - 70.7 431.0



Table S2. Refractive indexes of Sum-frequency, Vis, and IR beams

Medium
Refractive indexes at 

sum frequency
Refractive indexes at 

visible frequency
Refractive indexes at infrared 

frequency (2955 cm-1)

Air 1.00 1.00 1.00

D2O 1.33 1.33 1.32

Sapphire 1.78 1.77 1.70

PS adsorbed 
layer

1.20 1.20 1.20

CCl4 1.46 1.46 1.44

Note: the refractive indexes were referred to references S8, S9 and S10.

Table S3. The calculated Fresnel coefficient values
Fssp-yyz/|Fssp-yyz|

Sapphire (PS)/Air -0.21+0.05i/0.22

Sapphire (PS)/D2O -0.38-0.36i/0.52

Sapphire (PS)/CCl4 0.02-0.57i/0.57
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