Supporting Information

Observing Different Dynamic Behaviors of Weakly and Strongly Adsorbed Polystyrene Chains at Interfaces

Xu Li¹, Xiaofeng Han¹, Xiaoliang Wang², Zhan Chen^{3*}, and Xiaolin Lu^{1*}

We applied a film thickness gauge (SCREEN SPE USA, LLC, Lambda Ace VM-1200) to measure the PS layer thicknesses. For the weakly adsorbed layer, the measured thickness was 2.4 ± 1.2 nm; and for the strongly adsorbed layer, the measured thickness was 2.7 ± 0.4 nm, as shown in Figure S1. The results are consistent with the reported data in the literatures.^{S1,S2}

In Figure S2, the interfacial deuterated water (D_2O) spectra were shown for both the weakly and strongly adsorbed layers in *ssp* polarization combination. The results

indicated that D₂O were orderly arranged at the interface for both layers.

Figure S2. Normalized SFG spectra of the weakly and strongly adsorbed layers on sapphire in contact with D₂O in the OD stretching frequency range with *ssp* polarization combination. Panel A shows the spectrum of D₂O for the weakly adsorbed layer and Panel B shows the spectrum of D₂O for the strongly adsorbed layer. The solid lines were plotted to guide eyes.

We also collected SFG spectrum from the pure sapphire/air interface, as shown in Figure S3. A sharp peak located at \sim 3720 cm⁻¹ was observed, which can be assigned to the free OH vibrational mode on the sapphire surface.^{S3-S5}

Figure S3. Normalized SFG spectrum of pure sapphire in air in OH stretching

frequency range.

Lorentz equation was used for fitting SFG spectra. When the IR frequency is near the vibrational resonance, $\chi_{eff}^{(2)}$ can be written as^{S6,S7}:

$$\chi_{eff}^{(2)} = \chi_{nr} + \sum_{q} \frac{A_q}{w_2 - w_q + i\Gamma_q}$$
(S1)

where χ_{nr} represents the nonresonant background contribution. A_q , w_q and Γ_q represent the amplitude, resonant frequency and damping coefficient of the *qth* vibrational mode, respectively. In Table S1, fitting results were listed for the SFG spectra presented in the main context. In Table S2, the refractive indices of sum-frequency, Vis, and IR beams were listed. In Table S3, the calculated interfacial Fresnel coefficients were listed.

ω_q (cm ⁻ 1)	$\Gamma_q (\text{cm}^{-1})$	Assignment	on sapphire (air)		on sapphire (D ₂ O)		on sapphire (CCl ₄)	
			weakly	strongly	weakly	strongly	weakly	strongly
			A _{ssp}	A _{ssp}	A _{ssp}	A _{ssp}	A _{ssp}	A _{ssp}
2850	10.5	CH ₂ ss	3.2	6.0	-	5.5	2.8	8.5
2875	12.3	CH ₃ ss	7.1	5.4	-	3.7	8.5	5.8
2910	10.0	СН	4.0	6.3	-	3.2	2.5	6.0
2935	11.5	CH ₂ as	-7.2	-7.6	-	-6.5	-13.4	-10.8
2945	8.0	CH ₃ Fermi	1.5	-	-	-	-	-
3023	9.0	V _{20b}						
3032	7.0	v_{7a}	-	-5.8	-	-	-	-
3050	6.0	v_{7b}	-	4.4	-	-	-	-
3065	6.0	ν ₂	-	8.8	-	-	-	-
3620	80.0	ОН	-	-	-	84.1	-	-
3660	80.0	ОН	53.2	110.0	-	-	70.7	431.0

Table S1. The fitting results of the SFG spectra presented in the main text.

Medium	Refractive indexes at sum frequency	Refractive indexes at visible frequency	Refractive indexes at infrared frequency (2955 cm ⁻¹)
Air	1.00	1.00	1.00
D_2O	1.33	1.33	1.32
Sapphire	1.78	1.77	1.70
PS adsorbed layer	1.20	1.20	1.20
CCl_4	1.46	1.46	1.44

Table S2. Refractive indexes of Sum-frequency, Vis, and IR beams

Note: the refractive indexes were referred to references S8, S9 and S10.

Table S3. The calculated Fresnel coefficient values

	$\mathbf{F}_{ssp-yyz}/ \mathbf{F}_{ssp-yyz} $
Sapphire (PS)/Air	-0.21+0.05i/0.22
Sapphire (PS)/D ₂ O	-0.38-0.36i/0.52
Sapphire (PS)/CCl ₄	0.02-0.57i/0.57

REFERENCES

- S1. Gin, P.; Jiang, N.; Liang, C.; Taniguchi, T.; Akgun, B.; Satija, S. K.; Endoh, M. K.; Koga, T. Revealed Architectures of Adsorbed Polymer Chains at Solid-Polymer Melt Interfaces. *Phys. Rev. Lett.* 2012, *109*, 265501.
- Sen, M.; Jiang, N.; Cheung, J.; Endoh, M. K.; Koga, T.; Kawaguchi, D.; Tanaka, K. Flattening Process of Polymer Chains Irreversibly Adsorbed on a Solid. ACS Macro Lett. 2016, 5, 204–508.
- S3. Nanjundiah, K.; Hsu, P. Y.; Dhinojwala, A. Understanding Rubber Friction in the Presence of Water Using Sum-Frequency Generation Spectroscopy. J. Chem. Phys. 2009, 130, 024702.
- S4. Hass, K. C.; Schneider, W. F.; Curioni, A.; Andreoni, W. The Chemistry of Water on Alumina Surfaces: Reaction Dynamics from First Principles. *Science* 1998, 282, 265–268.
- S5. Kurian, A.; Prasad, S.; Dhinojwala, A. Direct Measurement of Acid–Base Interaction Energy at Solid Interfaces. *Langmuir* **2010**, *26*, 17804–17807.

- Wang, J.; Chen, C.; Buck, S. M.; Chen, Z. Molecular Chemical Structure on Poly (methyl methacrylate)(PMMA) Surface Studied by Sum Frequency Generation (SFG) Vibrational Spectroscopy. J. Phys. Chem. B 2001, 105, 12118–12125.
- S7. Li, X.; Li, B.; Zhang, X.; Li, C.; Guo, Z.; Zhou, D.; Lu, X. Detecting Surface Hydration of Poly(2-hydroxyethyl methacrylate) in Solution *in situ*. *Macromolecules* 2016, 49, 3116–3125.
- S8. See the website "https://refractiveindex.info".
- S9. Zhuang, X.; Miranda, P. B.; Kim, D.; Shen, Y. R. Mapping molecular orientation and conformation at interfaces by surface nonlinear optics. *Phys. Rev. B* 1999, 59, 12632–12640.
- S10. Simpson, G. J.; Dailey, C. A.; Plocinik, R. M.; Moad, A. J.; Polizzi, M. A.; Everly, R. M. Direct Determination of Effective Interfacial Optical Constants by Nonlinear Optical Null Ellipsometry of Chiral Films. *Anal. Chem.* 2005, 77, 215–224.