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Numerical Methods

We discretize the system of equations in two dimensions and remark that the discretization
in three dimensions can be done in a straightforward manner. Let u!'(j, k) be the finite
difference grid function evaluated at the j, k node at time step n of the ¢th variable. Assuming

a uniform step in space (h = h, = h,) and time (s), we discretize in time first semi-implicitly


swise1@utk.edu
kumarr@ornl.gov

leading to
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We discretize in space via the second order central difference scheme and define
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We make similar definitions for (V,M;w;) (4, k — 3), (VaMu;) (j,k + 3), ..., and define
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By introducing this discretized operator into the time discretized system we obtain a fully

discretized system which results in the large, sparse linear system
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where the time step has been suppressed. Note that the M; depend on the previous data

7, so in this linear system the mobilities M, are spatially dependant but do not depend on
the current solution. Similarly, we have introduced the notation Fy,, F,, for the data that
depend on the previous time step in — which comprise the right hand side of the
large linear system that we are solving. We solve this system using the Full Approximation
Storage (FAS) multigrid method based on the two level algorithm, which is extended into
an adaptive algorithm as in.” For the equations - we define the solution variables

and operators compactly as
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N the operator on the left hand side, S the right hand side, so that we are solving N (®) = S.
Then for each grid we define ®,,, IN,,, S,, to be the solution, operator, and right hand side

for the mth level grid. The FAS multigrid method is based on the two level method, which



1s written as

Initialize @0 = @710 «— "  the solved solution at the last time step;
Initialize S, = S ;

while ||N,,(®! ) — S,,|| > tol do
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®" = Smooth*(®’,, N,,, Sp) ;

end

Algorithm 1: Two-level Algorithm
Care must be taken in developing the smoother, as this is where most of the computational

time is spent. The smoother used is a Red-Black Gauss-Seidel smoother, though we present
one that is more Jacobi-like, as the implementation of the Gauss-Seidel method iterating

over the black and red cells resembles the Jacobi method. We must solve for the [ 4 1 iterate
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For this system, at every grid point we have to solve the system of equations of the form

air a9 0 0

as; ag a0
0 O asz3 Qs34

ag; 0 agz ay
0 0 0 0

aggr 0 ag3 0O

0 apnp 0 an

on every cell (7, k).
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Typically some decoupling strategy takes place in the smoother so as to reduce computa-

tion time, since solving this 7x7 system of equations on every cell for a fully coupled system

is computationally expensive. One effective strategy to decouple the system is to move the

pressure coupling terms a7, agy,and agr in the ¢; equations and the all of the coupling terms



in the p; equations, except the corresponding ¢; term, to the right hand side to get the

system
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This results in 3 block 2 by 2 matrix equations, which can be inverted readily. Then, once

those chemical potentials have been updated, the pressure Poisson equation can be solved.
To improve stability and ensure logarithms are not evaluated for values less than or equal

to zero, we regularize the logarithm® by using the Taylor expansion of the logarithm function

about ¢ for x < § so that
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for a small parameter § which is taken to be 1073 in simulations presented in this work. This



is an approximation to the logarithm function which is C? and which has the property that

on [d,00) its derivative and second derivative match that of the logarithm function, as
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Rayleighian approach

Here, we show that the Rayleighian approach based on the Onsager’s variational principle® '
will lead to the same set of equations. As already mentioned in the main text, this approach
involves a priori knowledge of the mechanism leading to dissipation of energy without any
prescription of deriving a so-called dissipation function. In the following, we use the relation
between the rate of the change of the free energy with the disspiation function as prescribed
by the Onsager’s variational principle. This allows us to identify the dissipation function and
construct an appropriate Rayleighian, which when optimized with respect to the velocities
and sources lead to an identical set of equations as presented in the main text.

The Rayleighian is a functional, which includes rate of change of the free energy (Fu),
the dissipation function (®) and constraints included via the methods of the Lagrange’s
multipliers (C'). As the dissipation function is only related to the fluxes, in general, we can
write

R[{@; w;, S, u; - n’r}] = Fu[{@', w;, Si, W; - n\r}] + (I)[{uia Si w; - n’r}]
(S-23)

+ C[{ ¢, us, Si, u; - nr}]

where ¢; is the volume fraction of ith component, u; and S; are the velocities and sources/sinks,

respectively, in the interior of volume (€2) with boundaries I' (see Fig. 1 in the main text).



u; - n is the normal component of the velocities at the boundaries. It is to be noted that
the dissipation function only depends on u; and S; without any explicit dependence on the
volume fractions, ¢;.

As per the variational principle leading to maximal rate of entropy generation requires

(e.g., see Eq. 5.10 in Ref.® and ST in Ref.”)

FU[{(bza U, Siv u; - n|F}] + C[{¢27 U;, Si? U; - n|F}] = _2(1)[{“’1'7 Siv u; - n|F}] (8_24>

Now, F, + C = F, which is given by Eq. 19 in the main text. This, in turn, means
that the right hand side of Eq. 19 allows us to identify the dissipation function readily.
Eliminating ¢;, y1; and p to rewrite the right hand side solely in terms of u;, S; and w;-n using
the constitutive equations (Egs. 16-18 in the main text) along with the local equilibrium

boundary conditions, leads to the realization that
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Here, similar to the main text, we have suppressed the functional dependencies of the coeffi-
cients ;,w; and A on the volume fractions, which need to be determined from a microscopic

approach. This leads to the Rayleighian, written as
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Optimizing the Rayleighian with respect to w;, S; and u;(x,t) - n leads to the same sets

of equations as the Egs. 16-18 in the main text. In particular,
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at the top boundary.

Additional simulation results

We have executed simulations with the identical parameter set as those used in generating
Fig. 7 in the main text. However, instead of using a concentration dependent ~;, which
leads to kinetic freezing, we have taken ~; to be independent of the volume fractions. For
this case, results are shown in [Fig. S3| In contrast to the Fig. 7 in the main text, pillars

are formed instead of a much rougher film seen in there.
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Fig. S1: Flory-Huggins free energy surface (f5/kgT, given by Eq. 40 in the main text, with
vapor being the zeroth component) for a ternary mixture with parameters, Ny = N; = Ny =
1,p00 = 0001,C = O7 /31 = /32 = 1.0,X01 = Xo02 — 12, X12 = 0.9.
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Fig. S2: Flory-Huggins free energy surface (f,/kgT, given by Eq. 40 in the main text, with

vapor being the zeroth component) for a ternary mixture with parameters, No = Ny = Ny =
1,p0 = 0.001,¢ = 0.2, py = p = 1.0, xo1 = x02 = 1.2, x12 = 0.9. It is shown that minimum
in the free energy surface is near ¢y &~ 1 so that the phase with high volume fraction of the
component 0 is energetically favorable.
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Fig. S3: (a) Plot of ¢, is shown here exhibiting enhanced phase separation near the vapor-
polymer blend interface. (b)-(c) More regular pillar-like structures start to emerge in contrast
to the volume fraction dependent ~;. (d) The pillar like structures stay stabilized.
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