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Numerical Methods

We discretize the system of equations in two dimensions and remark that the discretization

in three dimensions can be done in a straightforward manner. Let uni (j, k) be the finite

difference grid function evaluated at the j, k node at time step n of the ith variable. Assuming

a uniform step in space (h = hx = hy) and time (s), we discretize in time first semi-implicitly
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leading to

φn+1
sl − s∇ ·

(
Msl({φnα})∇

(
µn+1
sl + pn+1

))
− sρ̊−1

sl S
n+1
sl = φnsl (S-1)

φn+1
i − s∇ ·

(
Mi({φnα})∇

(
µn+1
i + pn+1

))
= φni for i = p, q (S-2)
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ρ̊−1
sl µ

n+1
sl + (ρ̊−1

sl − ρ̊
−1
sv )pn+1

)
(S-3)
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∇ ·
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sl = 0. (S-5)

We discretize in space via the second order central difference scheme and define

(∇hMiui) (j +
1

2
, k) = Mi(j +

1

2
, k)

ui(j + 1, k)− ui(j, k)

h
(S-6)

where

Mi(j +
1

2
, k) =

1

2
(Mi(j, k) +Mi(j + 1, k)) . (S-7)

We make similar definitions for (∇hMiui) (j, k − 1
2
), (∇hMiui) (j, k + 1

2
), . . ., and define
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(S-8)
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By introducing this discretized operator into the time discretized system we obtain a fully

discretized system which results in the large, sparse linear system

φsl − s∇h · (Msl∇h (µsl + p))− sρ̊−1
sl Ssl = Fφsl (S-9)

φi − s∇h · (Mi∇h (µi + p)) = Fφi for i = p, q(S-10)

Ssl = −λ
(
ρ̊−1
sl µsl + (ρ̊−1

sl − ρ̊
−1
sv )p

)
(S-11)

µi + ε2i∆hφi + ε2sl∆h

(∑
j 6=sv

φj

)
= Fµi (S-12)∑

i 6=sv

∇h · (Mi∇hµi) +
∑
i

∇h · (Mi∇hp) +
(
ρ̊−1
sv − ρ̊−1

sl

)
Ssl = 0 (S-13)

where the time step has been suppressed. Note that the Mi depend on the previous data

φni , so in this linear system the mobilities Mi are spatially dependant but do not depend on

the current solution. Similarly, we have introduced the notation Fφi , Fµi for the data that

depend on the previous time step in (S-1)- (S-5) which comprise the right hand side of the

large linear system that we are solving. We solve this system using the Full Approximation

Storage (FAS) multigrid method based on the two level algorithm,1 which is extended into

an adaptive algorithm as in.2 For the equations (S-9) - (S-13) we define the solution variables

and operators compactly as

Φ(j, k) = (φsl(j, k), µsl(j, k), φp(j, k), µp(j, k), φq(j, k), µq(j, k), p(j, k)) , (S-14)

N the operator on the left hand side, S the right hand side, so that we are solvingN (Φ) = S.

Then for each grid we define Φm,Nm,Sm to be the solution, operator, and right hand side

for the mth level grid. The FAS multigrid method is based on the two level method, which
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is written as

Initialize Φ0
m = Φn+1,0

m ←− Φn
m, the solved solution at the last time step;

Initialize Sm = Sn+1
m ;

while ‖Nm(Φr
m)− Sm‖ > tol do

Φr
m = Smoothλ(Φr

m,Nm,Sm) ;

rrm = Sm −Nm(Φr
m) ;

Restrict rrm−1 = Im−1
m rrm,Φ

r
m−1 = Im−1

m Φr
m ;

Solve Nm−1(Ψr
m−1) = Nm−1(Φr

m−1) + rrm−1 ;

erm−1 = Ψr
m−1 −Φr

m−1 ;

Prolongate Φr
m = Φr

m + Ikm−1e
r
m−1 ;

Φr
m = Smoothλ(Φr

m,Nm,Sm) ;

end
Algorithm 1: Two-level Algorithm

Care must be taken in developing the smoother, as this is where most of the computational

time is spent. The smoother used is a Red-Black Gauss-Seidel smoother, though we present

one that is more Jacobi-like, as the implementation of the Gauss-Seidel method iterating

over the black and red cells resembles the Jacobi method. We must solve for the l+ 1 iterate
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in
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(S-15)

µl+1
i (j, k)− 4(ε2i + ε2sv)

h2
φl+1
i (j, k)

+
(ε2i + ε2sv)

h2

(
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)
−
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h2
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(S-16)
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(S-17)

For this system, at every grid point we have to solve the system of equations of the form



a11 a12 0 0 0 0 a17

a21 a22 a23 0 a25 0 0

0 0 a33 a34 0 0 a37

a41 0 a43 a44 a45 0 0

0 0 0 0 a55 a56 a57

a61 0 a63 0 a65 a66 0

0 a72 0 a74 0 a76 a77





φl+1
sl (j, k)

µl+1
sl (j, k)

φl+1
p (j, k)

µl+1
p (j, k)

φl+1
q (j, k)

µl+1
q (j, k)

pl+1(j, k)



= RHS (S-18)

on every cell (j, k).

Typically some decoupling strategy takes place in the smoother so as to reduce computa-

tion time, since solving this 7x7 system of equations on every cell for a fully coupled system

is computationally expensive. One effective strategy to decouple the system is to move the

pressure coupling terms a17, a37,and a67 in the φi equations and the all of the coupling terms
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in the µi equations, except the corresponding φi term, to the right hand side to get the

system



a11 a12 0 0 0 0 0

a21 a22 0 0 0 0 0

0 0 a33 a34 0 0 0

0 0 a43 a44 0 0 0

0 0 0 0 a55 a56 0

0 0 0 0 a65 a66 0

0 a72 0 a74 0 a76 a77





φl+1
sl (j, k)

µl+1
sl (j, k)

φl+1
p (j, k)

µl+1
p (j, k)

φl+1
q (j, k)

µl+1
q (j, k)

pl+1(j, k)



= RHS

−



a17p
l(j, k)

a23φ
l
p(j, k) + a25φ

l
q(j, k)

a37p
l(j, k)

a41φ
l
sl(j, k) + a45φ

l
q(j, k)

a57p
l(j, k)

a61φ
l
sl(j, k) + a63φ

l
p(j, k)

0



.

(S-19)

This results in 3 block 2 by 2 matrix equations, which can be inverted readily. Then, once

those chemical potentials have been updated, the pressure Poisson equation can be solved.

To improve stability and ensure logarithms are not evaluated for values less than or equal

to zero, we regularize the logarithm3 by using the Taylor expansion of the logarithm function

about δ for x < δ so that

lnδ(x) =


ln(x) x > δ

ln(δ) + 2x
δ
− x2

2δ2
− 1.5 x ≤ δ

(S-20)

for a small parameter δ which is taken to be 10−3 in simulations presented in this work. This
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is an approximation to the logarithm function which is C2 and which has the property that

on [δ,∞) its derivative and second derivative match that of the logarithm function, as

d

dx
lnδ(x)

∣∣∣
x=δ

=
2

δ
− 1

δ
=

1

δ
(S-21)

and
d2

dx2
lnδ(x)

∣∣∣
x=δ

= − 1

δ2
. (S-22)

Rayleighian approach

Here, we show that the Rayleighian approach based on the Onsager’s variational principle4–7

will lead to the same set of equations. As already mentioned in the main text, this approach

involves a priori knowledge of the mechanism leading to dissipation of energy without any

prescription of deriving a so-called dissipation function. In the following, we use the relation

between the rate of the change of the free energy with the disspiation function as prescribed

by the Onsager’s variational principle. This allows us to identify the dissipation function and

construct an appropriate Rayleighian, which when optimized with respect to the velocities

and sources lead to an identical set of equations as presented in the main text.

The Rayleighian is a functional, which includes rate of change of the free energy (Ḟu),

the dissipation function (Φ) and constraints included via the methods of the Lagrange’s

multipliers (C). As the dissipation function is only related to the fluxes, in general, we can

write

R[{φi,ui, Si,ui · n|Γ}] = Ḟu[{φi,ui, Si,ui · n|Γ}] + Φ[{ui, Si,ui · n|Γ}]

+ C[{φi,ui, Si,ui · n|Γ}]
(S-23)

where φi is the volume fraction of ith component, ui and Si are the velocities and sources/sinks,

respectively, in the interior of volume (Ω) with boundaries Γ (see Fig. 1 in the main text).
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ui · n is the normal component of the velocities at the boundaries. It is to be noted that

the dissipation function only depends on ui and Si without any explicit dependence on the

volume fractions, φi.

As per the variational principle leading to maximal rate of entropy generation requires

(e.g., see Eq. 5.10 in Ref.4 and SI in Ref.7)

Ḟu[{φi,ui, Si,ui · n|Γ}] + C[{φi,ui, Si,ui · n|Γ}] = −2Φ[{ui, Si,ui · n|Γ}] (S-24)

Now, Ḟu + C = Ḟ , which is given by Eq. 19 in the main text. This, in turn, means

that the right hand side of Eq. 19 allows us to identify the dissipation function readily.

Eliminating φi, µi and p to rewrite the right hand side solely in terms of ui, Si and ui ·n using

the constitutive equations (Eqs. 16-18 in the main text) along with the local equilibrium

boundary conditions, leads to the realization that

Φ[{ui, Si,ui · n|Γ}] =
∑
i

[
1

2γi

∫
Ω

|ui(x, t)|2dx+
1

2ωi

∫
Γtop

|ui(x, t) · n|2dσ

]
+

1

2λ

∫
Ω

S2
sl(x, t)dx (S-25)

Here, similar to the main text, we have suppressed the functional dependencies of the coeffi-

cients γi, ωi and λ on the volume fractions, which need to be determined from a microscopic

approach. This leads to the Rayleighian, written as

R =
∑
i

[∫
Ω

φi(x, t)∇ (µi(x, t) + p(x, t)) · ui(x, t)dx

−
∫

Γtop

φi(x, t) (µi(x, t) + p(x, t))ui(x, t) · ndσ

+
1

2γi

∫
Ω

|ui(x, t)|2dx+
1

2ωi

∫
Γtop

|ui(x, t) · n|2dσ

]
+

1

2λ

∫
Ω

S2
sl(x, t)dx

+

∫
Ω

[
ρ̊−1
sl µsl(x, t)− ρ̊

−1
sv µsv(x, t) +

(
ρ̊−1
sl − ρ̊

−1
sv

)
p(x, t)

]
Ssl(x, t)dx (S-26)
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Optimizing the Rayleighian with respect to ui, Si and ui(x, t) ·n leads to the same sets

of equations as the Eqs. 16-18 in the main text. In particular,

δR

δui
= φi(x, t)∇(µi(x, t) + p(x, t)) + γ−1

i ui(x, t) = 0 (S-27)

δR

δSsl
= λ−1Ssl(x, t) + ρ̊−1

sl µsl(x, t)− ρ̊
−1
sv µsv(x, t) +

(
ρ̊−1
sv − ρ̊−1

sl

)
p(x, t) = 0 (S-28)

and
δR

δ(ui · n)
= ω−1

i ui(x, t) · n− φi(x, t) (µi(x, t) + p(x, t)) = 0 (S-29)

at the top boundary.

Additional simulation results

We have executed simulations with the identical parameter set as those used in generating

Fig. 7 in the main text. However, instead of using a concentration dependent γi, which

leads to kinetic freezing, we have taken γi to be independent of the volume fractions. For

this case, results are shown in Fig. S3. In contrast to the Fig. 7 in the main text, pillars

are formed instead of a much rougher film seen in there.
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Fig. S1: Flory-Huggins free energy surface (fh/kBT , given by Eq. 40 in the main text, with
vapor being the zeroth component) for a ternary mixture with parameters, N0 = N1 = N2 =
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Fig. S2: Flory-Huggins free energy surface (fh/kBT , given by Eq. 40 in the main text, with
vapor being the zeroth component) for a ternary mixture with parameters, N0 = N1 = N2 =
1, ρ̊0 = 0.001, c = 0.2, ρ̊1 = ρ̊2 = 1.0, χ01 = χ02 = 1.2, χ12 = 0.9. It is shown that minimum
in the free energy surface is near φ0 ≈ 1 so that the phase with high volume fraction of the
component 0 is energetically favorable.
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(a) (b)

(c) (d)

Fig. S3: (a) Plot of φq is shown here exhibiting enhanced phase separation near the vapor-
polymer blend interface. (b)-(c) More regular pillar-like structures start to emerge in contrast
to the volume fraction dependent γi. (d) The pillar like structures stay stabilized.
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