Supporting Information

A Green-Low-Cost Rechargeable Zn-ion Aqueous Battery Using Hollow Porous Spinel ZnMn₂O₄ as the Cathode Material

Xianwen Wu^{*a*, b, c*}, Yanhong Xiang ^a, Qingjing Peng^{*a*, b, c}, Xiangsi Wu^{*a*}, Yehua Li^{*a*, b}, Fang Tang^{*a*, b}, Runci Song^{*a*, b}, Zhixiong Liu^{*a*}, Zeqiang He^{*a*}, Xianming Wu^{*a*}

The specific capacity of ZnMn₂O₄ is calculated as follows:

Specific Capacity $(mAh/g) = \frac{Number of Electrons \times Faraday's Constant \times 1000}{3600 \times Formula Weight}$ $= \frac{1.6 \times 10^{-19} C \times 6.022 \times 10^{23} \times 2 \times 1000}{3600 \times (65.39 + 54.938 \times 2 + 16 \times 4)}$ = 224 mAh/g

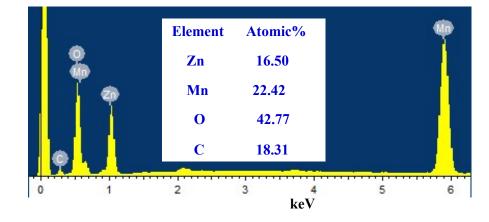


Figure SI-1 EDS of as-prepared ZnMn₂O₄

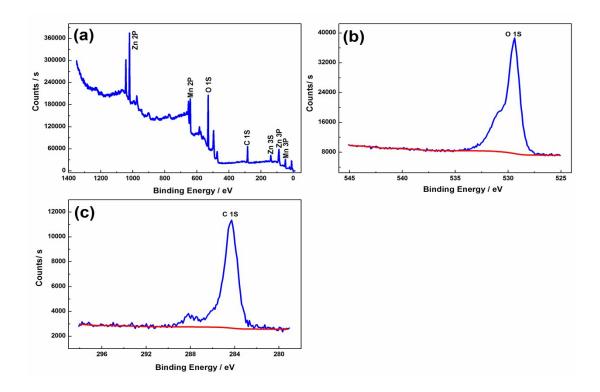


Figure SI-2 XPS spectra of the ZnMn₂O₄ samples: (a) survey spectrum; (b) O 1s spectrum; (c) C1s spectrum

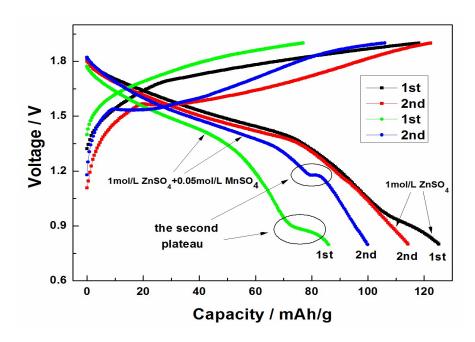


Figure SI-3 The charge/discharge curves of $ZnMn_2O_4/Zn$ between 0.8~1.9 V with different electrolytes at 100 mA/g

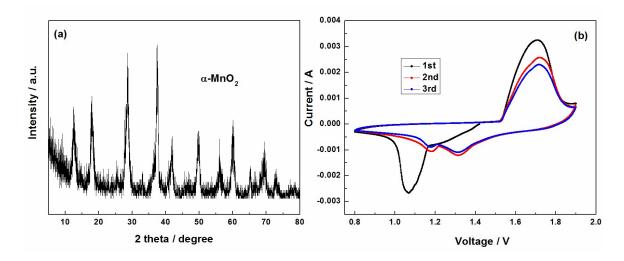


Figure SI-4 XRD of α -MnO₂ and the cyclic voltammetry curve of MnO₂/Zn based on 1mol/L ZnSO₄ with 0.05mol/L MnSO₄ in the range of 0.8~1.9 V at a scan rate of 1mV/s

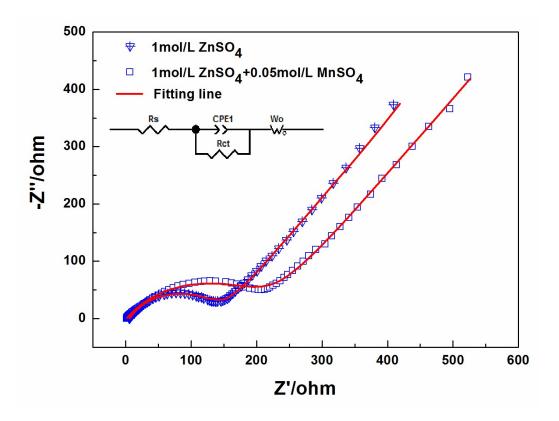


Figure SI-5 EIS spectra and the fitting curves of ZnMn₂O₄/Zn before cycling at 100 mA/g

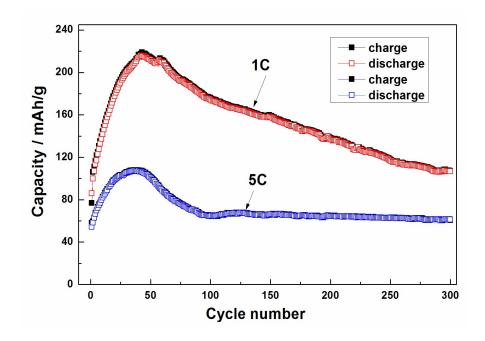


Figure SI-6 The cycling performance of ZnMn₂O₄/Zn at different C-rates

A typical cyclic voltammetry curve of Zn^{2+}/Zn half-cell between $-0.3 \sim -1.5$ V is shown in figure SI-7, and there is an inverted crossover "8" shape along the arrow direction. However, it can be noted that after adding 0.05 mol/L MnSO₄ into 1mol/L ZnSO₄, the dissolution potential peak is decreased from -1.365 V to -1.372 V in figure SI-7 although the initial coulombic efficiency is decreased a little, demonstrating that MnSO₄ decreased the overpotential and facilitated Zn dissolution much easier. As can be seen from figure SI-8 that the deposition/dissolution curves nearly overlap with the cycle number increasing and there is no hydrogen evolution, indicating the good cycleability and high coulombic efficiency of anode.

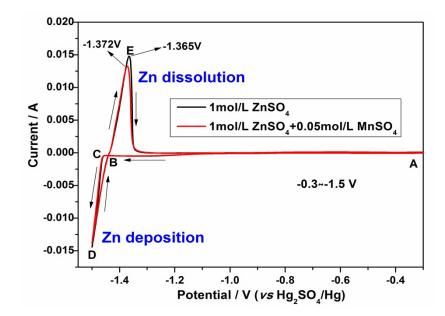


Figure SI-7 The initial deposition-dissolution process of zinc ion at a scan rate of 1 mV/s in different electrolyte

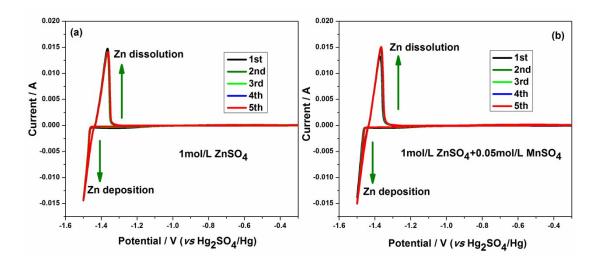


Figure SI-8 The deposition-dissolution process of zinc ion at a scan rate of 1 mV/s in different electrolyte (a, 1mol/L ZnSO₄; b, 1mol/L ZnSO₄+0.05mol/L MnSO₄)

The diffusion kinetics of electrode based on the cyclic voltammetry at different scan rates were analyzed, which can be seen in figure SI-9. Compared figure SI-9 a with figure SI-9 c, after adding $MnSO_4$ into 1mol/L ZnSO₄, the polarization phenomenon is decreased, which is consistent with the deposition/dissolution process of Zn²⁺ in different electrolyte in figure SI-7. Notably, the two separate peaks are more obvious after adding $MnSO_4$. It is well known that the

relationship between peak currents and scan rates indicates the different electrochemical reaction characteristics, including solid phase diffusion-controlled or surface-confined charge-transfer processes. As shown in figure SI-9 b and figure SI-9 d, there is a linear relationship between cathodic/anodic current peak and square root of scan rate, demonstrating the diffusion-controlled behavior. According to the Randle-Sevcik equation, $i_p=2.69\times105n^{3/2}AD^{1/2}v^{1/2}C_0$ (25 °C), where i_p is the peak current (mA), *n* is the number of electrons per reaction species, A is the surface area of the electrode (with the geometric area of the electrode,1.5385 cm², used for simplicity in this work), *D* is the diffusion coefficient of Zn²⁺ (cm²/s), *v* is the scan rate (V/s), *C*₀ is the concentration of zinc ion (0.0436 mol/cm³, calculated by the cell parameters and cell volume), the slopes can be obtained in figure SI-9 b and figure SI-9 d. The calculated Zn²⁺ diffusion coefficients in different electrolyte are 1.36×10^{-7} cm²/s, 1.53×10^{-6} cm²/s, respectively, indicating the higher ion diffusion behavior for the zinc ion aqueous battery. What's more, it is higher after adding MnSO₄ into 1mol/L ZnSO₄ than that without additive, which will show much better electrochemical performances for the former than that of the latter.

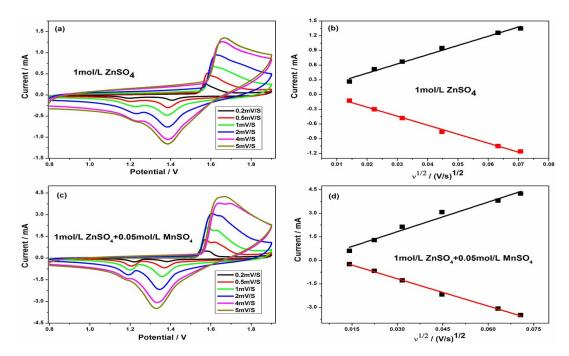


Figure SI-9 (a, c) the cyclic voltammograms of as-prepared ZnMn₂O₄ at different scan rates and (b, d) the relationships between the peak current and square root of scan rate in the main cathodic and anodic processes

Samples	Electrolyte	Cycling performance	Ref.	
α-MnO ₂	1 M ZnSO4	100 mAh g ⁻¹ at 630 mA g ⁻¹		
		with 76% capacity		
		retention after 100 cycles		
rod-like MnO ₂ /CNT	2 M ZnSO ₄ +0.5 M MnSO ₄	100 mAhg ⁻¹ at 5 A g ⁻¹ after 500 cycles		
α -MnO ₂ nanorod	1 M ZnSO ₄	147 mAh·g ⁻¹ at 83 mAg ⁻¹ with 63% capacity retention after 50 cycles		
α -MnO ₂ nanorod	1 M ZnSO ₄	140 mAh g ⁻¹ at 42 mA g ⁻¹	4	
		with 70% capacity retention after 30 cycles		
α -MnO ₂ nanorod	1 M ZnSO ₄	104 mAh g ⁻¹ at 83 mA g ⁻¹		
		with 38.5% capacity retention after 75 cycles	5	
α -MnO ₂ nanorod	2 M ZnSO ₄ + 0.1 M MnSO ₄	260 mAh g ⁻¹ at 308 mA g ⁻¹	(
		after 60 cycles	6	
ZnHCFs	1 M ZnSO4	49.7 mAh g ⁻¹		
		at 60 mA g ⁻¹ with 76% capacity	7	
		retention after 100 cycles		
ZnHCFs	1 M ZnSO ₄	47.4 mAh g ⁻¹		
		at 300 mA g ⁻¹ with 80% capacity	8	
		retention after 200 cycles		
Na ₃ V ₂ (PO ₄) ₃	0.5M Zn(CH ₃ COO) ₂	97 mAh g ⁻¹ at 0.5C with 74% capacity retention after 100 cycles		
Spinel-ZnMn _{1.86} O ₄	3 M	80 mAh g ⁻¹ at 500 mA g ⁻¹		
	Zn(CF ₃ SO ₃) ₂	with 94% capacity retention after 500 cycles	10	
Spinel ZnMn ₂ O ₄	1 M ZnSO ₄ +0.05M MnSO ₄	106.5 mAh g ⁻¹ at 100 mA g ⁻¹ with 123.87% capacity retention after 300 cycles		

Table SI-1 Comparison of electrochemical properties of different cathode materials for ZIBs

No.	Electrolyte	Rs (ohm)	Rct (ohm)
1#	1mol/L ZnSO ₄	5.599	138.4
2#	1mol/L ZnSO ₄ +0.05mol/L MnSO ₄	1.265	214.5

Table SI-2 Impedance parameters of equivalent circuit of ZnMn₂O₄/Zn

- [1] C.J. Xu, B.H. Li, H.D. Du, F.Y. Kang. Angew. Chem., 2012, 124, 957.
- [2] D.W. Xu, B.H. Li, C.G. Wei, Y.B. He, H.D. Du, X.D. Chu, X.Y. Qin, Q.H. Yang, F.Y. Kang. Electrochim. Acta, 2014, 133: 254.
- [3] M.H. Alfaruqi, J. Gim, S.J. Kim, J.J. Song, J. Jo, S.H. Kim, V. Mathew, J. Kim. J. Power Sources, 2015, 288: 320.
- [4] B. Lee, H.R. Li, H. Kim, K.Y. Chung, B.W. Cho, S.H. Oh. Chem. Commun. 2015, 51, 9265.
- [5] M.H. Alfaruqi, S. Islam, J. Gim, J.J. Song, S.J. Kim, D.T. Pham, J. Jo, Z.L. Xiu, V. Mathew, J. Kim. Chem. Phys. Lett., 2016, 650: 64.
- [6] H.L. Pan, Y.Y. Shao, P.F. Yan, Y.W. Cheng, K.S. Han, Z.M. Nie, C.M. Wang, J.H. Yang, X.L. Li, P. Bhattacharya, K.T. Mueller, J. Liu. Nat. Energy, 2016, 1:16039.
- [7] L.Y. Zhang, L. Chen, X.F. Zhou, Z.P. Liu. Adv. Energy Mate,r. 2015, 5(2):1400930.
- [8] L.Y. Zhang, L. Chen, X.F. Zhou, Z.P. Liu. Scientific Reports., 2016, 5:18263.
- [9] G.L. Li, Z. Yang, Y. Jiang, C.H. Jin, W. Huang, X.L. Ding, Y.H. Huang. Nano Energy, 2016, 25: 211.
- [10] N. Zhang, F.Y. Cheng, Y.C. Liu, Q. Zhao, K.X. Lei, C.C. Chen, X.S. Liu, J. Chen. J. Am. Chem. Soc., 2016, 138 (39):12894.