Supporting Information

Pyrite FeS₂ microspheres anchoring on reduced graphene oxide

aerogel as an enhanced electrode material for sodium ion batteries

Weihua Chen, ^{a,b,*} Shihan Qi,^a Linquan Guan,^a Chuntai Liu,^b Shizhong Cui,^c Changyu Shen^b, Liwei Mi^{c,*}

- a. College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China. E-mail: chenweih@zzu.edu.cn.
- b. National Engineering and Research Center for Adv. Polymer Processing Technology, Zhengzhou University, Zhengzhou, 450001 P. R. China
- c. Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P.R. China. E-mail: mlwzzu@163.com.

1. The morphology of pure FeS₂ microsphere

2. The role of SiO₂ nanoparticles in as-synthesized composite material

2.1The method of removing SiO₂ nano-particles

2.1.1 HF method

About 50 mg FeS₂@rGO-A composite material was added into 100 mL 10% HF aqueous solution (v/v), followed by stirring for 30 min at ambient temperature. Then, the HF treated product was collected by centrifugation, washed with DI water and alcohol for several times. The final product was dried at 80°C overnight.

2.1.2 NaOH method

About 50 mg FeS₂@rGO-A hybrid material was added into 100 mL 1M NaOH solution, followed by stirring for 2 h at 70 °C by using water bath. The NaOH treated product was collected by centrifugation, washed with DI water and alcohol for several times to remove the organic solvent. The final product was dried at 80 °C overnight.

2.1.3 Material characterization of the above two samples

Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS) and powder X-ray diffraciton (XRD) were carried out to characterize the morphology, elemental distribution and crystal phase information, respectively.

2.2 Results and Discussion

Fig. S2. (a) SEM image of a graphene sheet in our untreated sample (550 °C) and the nanoparticles on it, (b-e) EDS mappings of this region.

Fig. S3. The SEM images of (a) untreated sample, (b) NaOH treated sample, (c) HF treated sample (this 3 samples were thermal treated at 750 °C).

Fig. S4. The XRD profiles of untreated sample, NaOH treated sample and HF treated sample.

Fig. S5. EDS profiles of NaOH treated sample and HF treated sample.

Гab	le. S	1. 7	Гhe	Si e	lemental	contents	of	different	samp	les (atom	content)
-----	-------	------	-----	------	----------	----------	----	-----------	------	-------	------	---------	---

Method of treatment	Si elemental content/ %
Untreated	0.38
HF treated	0.05
NaOH treated	0.11

Fig. S6. Nyquist plots of untreated sample, NaOH treated sample and HF treated sample.

Fig. S7. Rate performance of untreated sample, NaOH treated sample and HF treated sample.

3. Electrochemical performances of pure rGO-A electrode

Fig. S8. Cyclic performance of pure rGO-A at 0.2C.

4. The calculation of the content of active material

The content of active material was calculated by followed equation:

$$C = \frac{R_1 - R_2}{0.665 - R_2}$$
 Equation S1

where R_1 is the mass residue rate of composite, R_2 is the mass residue rates of rGO-A(SiO₂), 0.665 is the mass residue rate of pristine FeS₂ (the FeS₂ thermal treated final product is Fe₂O₃), *C* is the content of active material in the composite.

5. The calculation of sodium ion diffusion coefficients

The sodium-ion diffusion coefficient can be obtained from EIS results. The calculation formula is shown as follows:

$$D = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2},$$
 Equation S2

where *R* represents the gas constant, *T* is the test temperature, *A* is the surface area of our electrode, *F* is the Faraday constant, *n* represents the number of electrons per molecule attending the charge-discharge reaction, *C* is the concentration of sodium ion in our composite electrode, and σ is the slope of the line Z' - $\omega^{-1/2}$ (shown in Fig. 4(e)).

6.The Nyquist plots of rGO-A electrode

Fig. S9. Nyquist plot of pure rGO-A electrode.

7. The calculation of apparent activation energy

Fig. S10. Nyquist plots of (a) pure FeS_2 electrode and (b) $FeS_2/rGO-A$ electrode at different temperatures.

We also calculated the activation energy (Ea) from the EIS data at different temperatures using the equations: i_0 =RT/nFR_{ct} (Equation S3) and i_0 =Aexp(-E_a/RT) (Equartion S4), where A is a temperature-independent coefficient, R is the gas constant, T is the absolute temperature, n is the number of transferred electrons, and F is the Faraday constant.

8. The electrochemical performance of FeS₂/rGO-A composite tested

in a large operation voltage range

Fig. S11. Cyclic performance of FeS₂/rGO-A in the voltage range of 0-2.8 V.

9. The charge and discharge profiles of FeS₂/rGO-A and pure FeS₂

Fig. S12. Charge and discharge profiles of (a) $FeS_2/rGO-A$ electrode and (b) pure FeS_2 electrode at different cycles (at 1C).

10. Loading amounts and thicknesses of FeS₂/rGO-A electrodes and

and FeS₂ electrodes.

Table. S2. Loading amounts of $FeS_2/rGO-A$ electrodes and pure FeS_2 electrodes.

No.	1	2	3	4	5	6	7	8	9	10	Average
loading amount of	bading amount of		6.01	6.11	6.52	6.01	6.01	6.32	6.22	6.42	6.19
$FeS_2/rGO-A (mg cm^{-2})$		0.91									
loading amount of FeS_2 in	5.07	4 67	4 75	4 83	5 1 5	4 75	4 75	4 99	4 91	5.07	4 89
FeS ₂ /rGO-A (mg cm ⁻²)	5.07	1.07	1.75	1.05	5.15	1.75	1.75	1.55	1.91	5.07	1.09
loading amount of FeS_2	7.85	7.95	7.44	7.95	7.64	7.95	8.05	7.75	7.85	7.54	7.80
(mg cm ⁻²)											

The loading amount of the FeS₂/rGO-A electrode was kept at about 4.9 mg cm⁻² and the thickness of electrode materials was about 45 μ m. Besides, for FeS₂ electrode, the values were about 7.8 mg cm⁻² and 40 μ m, respectively.

11. CV profiles of FeS₂/rGO-A electrode and pure FeS₂ electrode

Fig. S13 CV profiles of FeS₂/rGO-A electrode and pure FeS₂ electrode of the 2^{nd} cycle at a scan rate of 0.2 mV s⁻¹.

As shown in Fig. S13, there are one reduction peak and two oxidation peaks on the CV profile of FeS₂/rGO-A, corresponding to the sodiation and desodiation processes, respectively. The two oxidation peaks may correspond to the desodiation processes of two different Na⁺ ions. There is only one obvious oxidation peak on the CV profile of pure FeS₂ because only about one Na⁺ ion extracts out of FeS₂. Obviously, the potential difference of FeS₂/rGO-A between oxidation peaks and reduction peak is smaller than the one of pure FeS₂, suggesting that FeS₂/rGO-A suffers a smaller polarization. This outcome indicates that the conductivity of FeS₂ is lower than FeS₂/rGO-A's.

Sample	Current	Cyclic Performance	Ref	
FeS2/rGO-A	900 mA/g	decay rate of 0.051% per cycle over 800 cycles (181.0 mAh/g reserved)	This work	
	200 mA/g	decay rate of 0.091% per cycle over 200 cycles (238.4 mAh/g reserved)		
Ultrafine FeS ₂ Nanocrystals	100 mA/g	decay rate of 1.2% per cycle over 30 cycles	ACS Nano ¹ 2015	
PEO-MoS ₂	50 mA/g	decay rate of 0.489% per cycle over 70 cycles (148 mAh/g)	Nano Energy ² 2015	
MoS ₂ @C-CMC	80 mA/g	286 mAh/g after 100 cycles	Adv.Energy Mater. ³ 2016	
WS ₂ /CNT-rGO aerogel	200 mA/g	259.2 mAh/g after 100 cycles	Adv.Energy Mater. ⁴ 2016	
Hollow NiS spheres	100 mA/g	decay rate of 0.54% per cycle over 50 cycles	Adv. Funct. Mater. ⁵ 2016	
CoS ₂ -CoS-G microspheres	200 mA/g	decay rate of 0.31% per cycle over 100 cycles	Nano Energy ⁶ 2016	

Table. S3. Comparison of electrochemical performance of FeS ₂ /rGO-A	A in this work
with reported related materials in Sodium Ion battery.	

A. Douglas, R. Carter, L. Oakes, K. Share, A.P. Cohn and C.L. Pint, Acs Nano, 2015, 9(11), 11156.
Y.F. Li, Y.L. Liang, F.C.R. Hernandez, H.D.Yoo, Q.Y. An, Y. Yao, Nano Energy, 2015, 15, 453.

3. X.Q. Xie , T. Makaryan , M.Q. Zhao , K.L.V. Aken , Y. Gogotsi and G.X. Wang, *Adv. Energy Mater.*, 2016, **6**, 1502161.

4. Y. Wang, D.Z. Kong, W.H. Shi, B. Liu, G.J. Sim, Q. Ge and H.Y. Yang, *Adv. Energy Mater.*,2016, **6**, 1601057.

5. D. Zhang, W.P. Sun, Y. Zhang, Y.H. Dou, Y.Z. Jiang and S.X. Dou, *Adv. Funct. Mater.*, 2016, **26**, 7479.

6. J.S. Cho, J.M. Won, J.K. Lee, Y.C. Kang, Nano energy, 2016, 26, 466.