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Figure S1 (a) FT-IR spectra of dopamine modified and pristine BNT nanofibres (NFs). It can be
seen that two new peaks were formed after the BNT NFs were modified by dopamine; the peaks at

1456 and 1569 cm' originate from —NH;" deformation and amide band, NH bending,
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respectively.! (b) TGA curve of BNT NFs@Dopamine.
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Figure S2 (a) Thermal conductivity and thermal diffusion, and (b) Thermal conductivity

enhancement of the BNT nanofiber/P(VDF-HFP) composites with filler loading, a photo of the

samples is shown in the insert. The room temperature thermal conductivity of the pure P(VDF-

HFP) is approximately 0.2 W m™! K ~!, as previously reported.? It is clear that the thermal

conductivity of the composites depends on the BNT nanofiber loading, which increases with the

degree of loading; a similar phenomenon is exhibited with respect to thermal diffusion. For

example, the thermal conductivity of the nanocomposite with 12.73 vol% BNT nanofibers

increased to 0.67 W m™' K !, which increased by more than two times compared to the pure

P(VDF-HFP) matrix. The enhancement of thermal conductivity is shown in Figure S5b, and the

insert shows the test sample of the BNT nanofiber/P(VDF-HFP) composites. The increased

thermal conductivity and thermal diffusion is attributed to the high thermal conductivity and

thermal diffusion of the BNT nanofiber phase and the homogeneous dispersion of BNT nanofiber
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in the polymer matrix as well as the high density achieved via hot pressing.
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Figure S3 (a) FT-IR spectra of the P(VDF-HFP) nanocomposites with different BNT NFs
loadings, (b) The tensile stress-displacement curve of BNT Nanofibers/P(VDF-HFP)

nanocomposites with BNT loading level in vol.%.

Table S1 Characteristic breakdown strength and shape factor of the breakdown strength

data for the samples

Sample (BNT vol.%) B Eo (kV/mm)
0 8.24 397
2.37 4.30 458
5.19 5.50 337
12.73 5.96 302




Figure S4 Cross-sectional SEM image of BNT nanofiber/P(VDF-HFP) composites. BNT
nanofibres were aligned to the direction of the nanocomposite film, which was perpendicular to

the direction of the electric field.
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Figure S5 D-E loops of the BNT nanofiber/P(VDF-HFP) nanocomposites with various filler

loadings at the maximum electric field. The saturated polarization was continuously increased

with the BNT nanofiber content, while the remanent polarization showed a faster increase trend

than saturated polarization of the nanocomposite with 12.73 vol% BNT NFs.
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Figure S6 Max. and remnant electric displacement of the BNT nanofiber/P(VDF-HFP)

nanocomposites with various filler loadings at the largest electric field.
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Figure S7 (a) Effect of interphase permittivity (solid line, left axis) and electric field concentration
factor, 1/Ef* (dashed line, right axis), on relative permittivity of composite for constant interlayer
thickness (t = 1), varying aspect ratio (AR =15, 50, 200); (b) effect of interphase permittivity on
normalized energy density for interlayer thickness t = 1 (solid lines) and t = 2 (dashed lines) for
varying aspect ratio (AR =15, 50, 200) of high permittivity phase. Increasing the permittivity of

the interphase past =15 is detrimental in terms of energy storage properties due to an increase in



electric field concentration.
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