Supplementary Information

Construction of 3D Pomegranate-Like Na₃V₂(PO₄)₃/conducting carbon composites for high power sodium ion batteries

Enhui Wang,^{ab} Wei Xiang,^d Ranjusha Rajagopalan,^{ab} Zhenguo Wu,^a Junghoon Yang^c,

Mingzhe Chen,^{ab} Benhe Zhong^a, Shi Xue Dou^b, Shulei Chou, *^b Xiaodong Guo, *^{ab} and Yong-Mook Kang*^c

^a College of Chemical Engineering, Sichuan University, Chengdu 610065, PR China

^b Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2522, Australia

^c Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea

^d College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China

* Corresponding author E-mail:

Xiaodong Guo; <u>xiaodong2009@scu.edu.cn</u>, Shulei Chou; <u>shulei@uow.edu.au</u>, Yong-Mook Kang; <u>dake1234@dongguk.edu</u>

Fig. S1 SEM pictures of PL-NVP@C in (a) low magnification, and (b)(c)(d) partial enlarged images.

Fig. S2 TEM/HRTEM images of NVP@C.

Citric acid solution

Mixed solution

Fig. S3 The color of solution (a) before chelating process and (b)(c)(d)(e) after chelating process; (a) colorless, (b) yellow, (c) orange red, (d) green green, (e) dark bule.

(a)
$$6NH_4VO_3 + 5C_6H_8O_7 \rightarrow 6(VO)(OH)_2 + 3C_5H_6O_5 + 2C_6H_8O_7 + 3CO_2\uparrow + 6NH_3\uparrow$$
 (1)

$$3C_5H_6O_5 + 3(VO)(OH)_2 \rightarrow 3(VO)(C_5H_4O_5) + 6H_2O$$
 (2)

$$2C_6H_8O_7 + 3(VO)(OH)_2 \rightarrow (VO)_3(C_6H_5O_7)_2 + 6H_2O$$
 (3)

The chemical structures of C₆H₈O₇ and C₅H₆O₅.

(c)

Possible chelating configuration between $C_5H_6O_5$ chelator and $(VO)^{2+}$.

Possible chelating configuration between $C_6H_8O_7$ chelator and $(VO)^{2+}$.

Fig. S4 (a) The corresponding reactions; (b) The chemical structures of $C_6H_8O_7$ and $C_5H_6O_5$; (c) Possible chelating configurations $C_6H_8O_7/C_5H_6O_5$ chelators and VO^{2+} ; (d) The simplified chelating pattern between $C_6H_8O_7/C_5H_6O_5$ chelators and VO^{2+} when mixed together, shown in Scheme 1.

Fig. S5 Rietveld-refined XRD patterns of PL-NVP@C and NVP@C.

Table S1 Unit ce	ll parameters of PL-	•NVP@C and N	VP@C
------------------	----------------------	--------------	------

Samples	a(Å)	c(Å)	V(Å ³)
PL-NVP@C	8.7259	21.8218	1438.9469
NVP@C	8.7313	21.8393	1441.8956

Fig. S6 FTIR spectra of (a) PL-NVP@C and (b) NVP@C.

Fig. S7 Raman spectra of NVP.

Fig. S8 Thermogravimetric curves of (a) PL-NVP@C and (b) NVP@C in the air.

Fig. S9 Nitrogen adsorption/desorption isotherms of (a) PL-NVP@C and (b) NVP@C;

Inset: the BJH pore distribution.

Fig. S10 Discharge curves of NVP@C electrode.

Fig. S11 dQ/dV curves of PL-NVP@C and NVP@C samples.

Fig. S12 Cycling performances of PL-NVP@ for over 2000 cycles

at (a) 30C and (b) 50C, respectively.

equivalent circuit fitting.						
Samples	$R_{e}(\Omega)$	P	Diffusion coefficient			
		$\mathbf{K}_{ct}(\Omega)$	$D_{Na^+}(cm^2/s)$			
PL-NVP@C	4.69	56.84	8.33×10 ⁻¹³			
NVP@C	3.89	151.2	4.65×10 ⁻¹⁴			

Table S2 Kinetic parameters of PL-NVP@C and NVP@C obtained from EIS equivalent circuit fitting.

Fig. S13 (a) Rate performance and (b) charge/discharge curves of PL-NVP@C from 1 to 50C (charged and discharged under same rates).

Fig.S14 Comparison of the rate capabilities of PL-NVP@C with other NVP@C materials reported before (charged and discharged under same rates).

Fig. S15 The relationship between Z_{re} and $\omega^{-1/2}$ in the low frequency region.