Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI)

ZnO Nanosheet/Squeezebox-like Porous Carbon Composite Synthesized by In-Situ Pyrolysis of a Mixed-Ligand Metal-Organic Framework

Ang Li; Huaihe Song*; Zhuo Bian; Liluo Shi; Xiaohong Chen; Jisheng Zhou

State Key Laboratory of Chemical Resource Engineering; Beijing Key Laboratory of Electrochemical Process and Technology for Materials; Beijing University of Chemical Technology; Beijing; 100029; P.R. China.

SI.1 Charaterization of ZnO/MPC

Fig. S1 (a)EDS mapping profiles and (b) Raman spectrum of ZnO/MPC.

The Raman data of ZnO/MPC^{s1}:

ZnO: 197 cm⁻¹ (2Elow 2); 331 cm⁻¹ (Ehigh 2-Elow 2); 410 cm⁻¹ (E₁(TO)); 439 cm⁻¹ (Ehigh 2);

483 cm⁻¹ (2LA); 590 cm⁻¹ (E₁(LO)); 780 cm⁻¹ (LA+TO). **C:** 1344 cm⁻¹ (D), 1600(G).

Fig. S2 N₂ adsorption isotherms of Zn-BDC-TED. The inset is the pore size distribution. The BET specific surface area is 1241 m² g⁻¹. The single point adsorption total pore volume is 0.666 cm³ g⁻¹, and the t-Plot micropore volume is 0.662 cm³ g⁻¹.

Fig. S3 FTIR curves of the collected condensate and the commercial TED.

Fig. S4 The distance distribution function P(r) of SAXS curves for ZnO/MPC and MPC. The inset is the form of P(r)/r, which is used to calculate the shape parameters.

Fig. S5 In-situ 2D-DRIFT profiles of the pyrolysis of Zn-BDC-TED, which was heated at a constant temperature of 500 °C. (the color bar is the scale of absorbance).

Fig. S6 The growth density of ZnO nanosheets on different facet of particles. The x-axis is the facet area of the corresponding surface that has ZnO nanosheets on it.

Fig. S7 Cyclic voltammograms of (a)ZnO/MPC and (b) MPC electrodes with scanning rate at 0.01 mV s^{-1} in the range of 0.01-3.0 V.

		Discharge enerifie	Cuala	Def
Materials	Current density	Discharge specific	Cycle	кет.
		capacity (mAhg-1)	number	
ZnO NS	0.5C	163	30	s2
ZnO NS	0.5C	381	30	s2
ZnO NS	100 mA g ⁻¹	420	50	s3
ZnO NS/rGO	200 mA g ⁻¹	402	100	s4
ZnO ND	100 mA g ⁻¹	478	50	s5
ZnO ND/CNTs	100 mA g ⁻¹	602	50	s5
ZnO NR	0.1 mA cm ⁻²	310	40	s6
ZnO/CNTs	0.2C	460	100	s7
ZnO NR/C	0.25C	330	50	s8
ZnO/MPC	60 mA g ⁻¹	920	150	This
	500 mA g ⁻¹	560	20	work
	1 A g ⁻¹	363	20	work
МРС	60 mA g ⁻¹	974	150	
	500 mA g ⁻¹	515	20	This
	1 A g ⁻¹	404	20	work

Table S1. The specific capacity values of ZnO nanomaterials in previous literature and thispaper.

NS - nanosheet; ND - nanodisk; NR - nanoribbon; CNTs - carbon nanotubes; rGO - reduced graphene oxides

References

- s1 R. Cuscó, E. Alarcón-Lladó, J. Ibáñez, L. Artús, J. Jiménez, B. Wang, M. J. Callahan, *Phys. Rev. B*, 2007, **75**, 165202.
- s2 F. Li, L. Yang, G. Xu, H. Xiaoqiang, X. Yang, X. Wei, Z. Ren, G. Shen and G. Han, J. Alloys Compd., 2013, **577**, 663-668.
- s3 X. H. Huang, R. Q. Guo, J. B. Wu and P. Zhang, *Mater. Lett.*, 2014, **122**, 82-85.
- s4 J. Wu, C. Chen, Y. Hao and C. Wang, Colloids Surf., A, 2015, 468, 17-21.
- s5 S. M. Abbas, S. T. Hussain, S. Ali, N. Ahmad, N. Ali and S. Abbas, *J. Mater. Sci.*, 2013, **48**, 5429-5436.
- s6 H. Wang, Q. Pan, Y. Cheng, J. Zhao and G. Yin, *Electrochim. Acta*, 2009, **54**, 2851-2855.
- s7 H. Köse, Ş. Karaal, A. O. Aydın and H. Akbulut, J. Power Sources, 2015, 295, 235-245.
- s8 J. P. Liu, Y. Y. Li, R. M. Ding, J. Jiang, Y. Y. Hu, X. X. Ji, Q. B. Chi, Z. H. Zhu and X. T. Huang, J. *Phys. Chem. C* **2009**, 113, 5336-5339.