Supporting Information

Simple preparation of highly active water splitting FTO/BiVO₄ photoanode modified with tri-layers water oxidation catalysts

Eman A. Mohamed,^a Zaki N. Zahran,^{a,b*} and Yoshinori Naruta^{a,c*}

Materials. The FTO conducting glass sheet (fluorine doped SnO₂, 30 cm x 30 cm, sheet resistance: 7 Ω /square, transmission, 90% in the visible region) was obtained from SPD Laboratory, Inc. Bi(NO₃)₃•5H₂O (99.9 %) and NH₄VO₃ (99.9%) were purchased from Kanto Chemical Co. 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMI triflate), 4,4⁺-bismethyl-2,2⁺-bipyridine, CoCl₂, FeSO₄, NiSO₄, KH₂PO₄ (\geq 99%), K₂HPO₄ (\geq 99%), Na₂SO₃, KOH (\geq 86%), HClO₄, and NaClO₄ (99.99%,) were purchased from Sigma-Aldrich Co. All reagents were used as received without further purification. Mill-Q water (18 M Ω .cm) was used for solutions preparation.

Instruments and characterization. UV-visible spectra were determined with a Shimadzu UV-2501PC spectrometer. The electrochemical measurements were carried out on an Autolab Potentiostat/Galvanostat model PGSTAT128N. Particle morphologies and sizes were observed by scanning electron microscopy, Field Emission Hitachi Model S-4300 scanning electron microscope operated at 15 KV accelerating voltage and 15 mm working distance. The X-ray diffraction patterns (XRD) of the sample were collected by Rigaku Co. XRD patterns were recorded from 15° to 60° in 20 at a step size of 0.05° and a scan rate of $0.25^{\circ}/\text{min}$. Gas chromatographic analyses were done with a Shimadzu GC-8A equipped with a capillary column (0.53 mm ID x 15 m) with a Molecular Sieve 5A layer at 40 °C using Ar as a carrier gas. XP spectra were obtained using a Ulvac Phi 5000 VersaProbe CU X-ray Photoelectron Spectrometer with a Multipak data treatment system. The photoelectrons emitted by a monochromated Al K (1486.6 eV; 350 W) radiation were collected with path energy of 23.5 eV through a hemispherical analyzer. The pressure in the analyzing chamber was below $1 \ge 10^{-9}$ Torr during the measurements. All spectra in XPS were calibrated to C 1s = 284.6 eV. The photocurrent under monochromic light and the IPCE spectrum were measured with a monochromator light source M10-T,

Bunkoukeiki Co., Ltd. The intensity of the applied monochromic light was calibrated by a reference silicon cell, S1337-1010BQ, Hamamatsu Photonics K. K. In the measurements of photocurrent and evolved O_2 and H_2 , a 300-W Xenon lamp, MX-302, Asahi Spectra Co., Ltd. was used as the light source using a 420 nm cut off filter. The light intensity was calibrated to a100 mW cm⁻² using a reference silicon cell, BS-520, Bunkoukeiki Co., Ltd.

Preparation of [Co(bpy-P)2]Cl2 water oxidation catalyst. First, the ligand 4,4'-

Bis(diethylmethylphosphonate)-2,2⁻-bipyridine (bpy-PEt) was prepared by following reported procedures¹ according to the following chart:

4,4°-Bis(diethylmethylphosphonate)-2,2°-bipyridine

¹H NMR (400 MHz, CDCl₃): δ 8.59 (d, 2H), 8.35 (t, 2H), 7.33 (dd, 2H), 4.08 (m, 8H), 3.22 (d, 4H), 1.29 (t, 12H). MALDI-TOF-MS: m/z = 456.6 (found), 456.41 (calcd.). Then, the ligand (0.7 g, 1.54 mmol), anhydrous CoCl₂ (0.1 g, 0.77 mmol), and dry ethanol (15 ml) were charged into a Schlenk tube. The orange solution was refluxed under N₂ overnight. The solvent was then removed under vaccuo, and the orange red residue was further purified over Sephadex using CH₂Cl₂ as eluent. The Matrix Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) mass, UV-vis spectra, and elemental analysis are consistent with the formation of a pure [Co(bpy-PEt)₂]Cl₂ complex. The ethyl phosphonate of the complex was hydrolyzed to the corresponding phosphonic acid by mixing the complex (100 mg in 10 mL CH₃OH) with Conc. HCl (12 M, 10 mL) and overnight refluxing. The free phosphonic acid containing complex, [Co(bpy-P)₂]Cl₂ was further purified on the Sephadex column using CH₃OH as eluent. The MALDI-TOF, UV-vis, and elemental analysis confirm its purity. The chemical structure of the complex is presented below:

[Co(bpy-P)₂]Cl₂

Electrocatalytic water oxidation performance of [Co(bpy-P)₂]Cl₂ anchored to metal oxide electrodes. To the best of our knowledge, only one report uses a bipyridine ligand covalently anchored to a graphene modified electrode as an efficient way to bind several metal ions including Co²⁺, Ni²⁺, Fe³⁺ and Cu²⁺ to the surface of the electrode and uses the assembly as efficient water oxidation catalysts.² Phosphonic acid, on the other hand, is a well-known anchor group that previously used to provide a strong chemical attachment of Ru terpyridine water oxidation catalysts (WOCs) and Ru bipyridine dyes to metal oxide electrodes such as TiO₂, FTO, and ITO. Here we used the phosphonic acid as a linker to attach the Co bipyridine WOC ([Co(bpy-P)₂]Cl₂) to the FTO/EMI s-m BiVO₄ photoanode. The anchoring and the electrode prepared by a reported procedures.³ The modification of the catalyst on the Ti/TiO₂ electrode was achieved by soaking the electrode in a 1 mM catalyst solution in EtOH. The electrode modified with the catalyst was then washed with EtOH several times and allowed to dry at r.t for a couple of hours before further characterization and electrochemical

measurements. Figure S5 shows the results of such investigations that indicate the high activity of the catalyst for water oxidation.

Preparation of BiVO₄ colloidal solution. Bi(NO₃)₃•5H₂O (1.502 g, 3 mmol), NH₄VO₃ (0.362 g, 3 mmol), and MeOH (5.1 mL) were mixed and sonicated for several hours at room temperature to form a yellow colloidal solution of BiVO₄. EMI triflate ionic liquid (0.9 mL) was then added to the solution to form the desired EMI triflate containing BiVO₄ colloidal solution.

Preparation of FTO/EMI s-m BiVO4 photoanode. A FTO sheet was cut down to rectangular plates of 5.0 cm x \Box 3.0 cm, sonicated in acetone and de-ionized water for 15 min each, and then dried in an oven at 60 °C. An adhesive NITOFLON[®] tape No. 973UL (Nitto Denko Co., Ltd) was attached on the plate (2 layers of tape) in such a way that 1.0 cm x 5.0 cm of the plate remained uncovered. The EMI triflate containing BiVO4 colloidal paste solution (200 µL) was spread over the uncovered 1.0 cm x 5.0 cm of the plate then justified with a glass tube using a doctor Blading technique. The EMI triflate containing BiVO4 layer was allowed to dry in few minutes, the tape was then removed, and the FTO/ EMI triflate containing BiVO4 layer was sintered in an oven at 450 °C for 2 hours under air. After cooling down, the FTO/ EMI triflate containing BiVO4 layer on the FTO electrode called FTO/EMI s-m BiVO4. The FTO/EMI s-m BiVO4 was cut into suitable pieces (0.5 cm x 1.0 cm) for the characterization and measurements.

Preparation of FTO/EMI s-m BiVO₄/FeOOH photoanode. FeOOH water oxidation catalyst was photodeposited on the FTO/EMI s-m BiVO₄ photoanode using the same procedures reported by Kim, T. W. et al.⁴ The photodeposition was achieved at 0.25 V vs. Ag/AgCl in a three-electrode cell composed of a FTO/EMI s-m BiVO₄ working electrode, a Pt counter electrode, and a Ag/AgCl (3 M KCl) reference electrode and filled with an air free 0.1 M FeSO₄ solution of pH adjusted to 7.0 by adding NaOH. A 300 W Xe lamp with an adjusted power intensity of 100 mW/cm² was used as the light source. The light was illuminated through the FTO contact (back-side illumination). The photodeposition was continued until a total charge of 45 mC/cm² was consumed that took about 15 min. After photodeposition, an electrodeposition of FeOOH was

performed in the same solution at 1.2 V vs. Ag/AgCl for 1 min.

Preparation of FTO/EMI s-m BiVO4/FeOOH/NiOOH photoanode. NiOOH water oxidation catalyst was photodeposited on the FTO/EMI s-m BiVO4/FeOOH photoanode using the same procedures reported by Kim, T. W. et al.⁴ The photodeposition was achieved at 0.11 V vs. Ag/AgCl in a three-electrode cell composed of a FTO/EMI s-m BiVO4/FeOOH working electrode, a Pt counter electrode, and a Ag/AgCl (3 M KCl) reference electrode and filled with an air free 0.1 M NiSO4 solution of pH adjusted to 7.0 by adding NaOH. A 300 W Xe lamp with an adjusted power intensity of 100 mW/cm² was used as the light source. The light was illuminated through the FTO contact (back-side illumination). The photodeposition was continued until a total charge of 22 mC/cm² was consumed that took about 10 min. After photodeposition, an electrodeposition of NiOOH was performed in the same solution at 1.2 V vs. Ag/AgCl for 1 min.

Preparation of FTO/EMI s-m BiVO₄/FeOOH/NiOOH/Co(bpy-P)₂ photoanode. The FTO/EMI s-m BiVO₄/FeOOH/NiOOH photoanode was immersed into a 1mM ethanolic solution of the Co(bpy-P)₂ water oxidation catalyst and removed immediately. The photoanode was allowed to dry at the r.t then heated at 120 °C for a couple of hours.

Photoelectrochemical and electrochemical measurements. The photocurrent measurements were performed under an argon atmosphere using a conventional three-electrode cell. The working electrode was FTO/EMI s-m BiVO₄/FeOOH, FTO/EMI s-m BiVO₄/FeOOH, FTO/EMI s-m BiVO₄/FeOOH/NiOOH, or FTO/EMI s-m BiVO₄/FeOOH/NiOOH/Co(bpy-P)₂. A Pt wire and an Ag/AgCl (3 M NaCl) were the counter and reference electrodes, respectively. While all measurements were carried out using a Ag/AgCl (3 M KCl) reference electrode, the results in this study are presented against the reversible hydrogen electrode (RHE) for ease of comparison with H₂ and O₂ redox levels and other reports that used electrolytes with different pH conditions. The conversion between potentials vs. Ag/AgCl and vs. RHE is performed using the equation:

$$E(vs. RHE) = E(vs. Ag/AgCl) + 0.059 pH + E(Ag/AgCl)$$

E(Ag/AgCl) = 0.198 V vs. NHE at 25 °C

All measurements were made in a neutral 0.1 M potassium phosphate, K-Pi buffer solution of pH = 7.0 and in 0.1M K-Pi containing 0.5 M Na₂SO₃ as a hole scavenger, as noted in the main text at 25°C. A solar simulator (OTENTO-SUN II, Bunkoukeiki Co., Ltd.) was used as an AM 1.5 light source. The power of the simulated light was calibrated to a 100 mW/cm² using a certified reference silicon cell (BS-520, Bunkoukeiki Co., Ltd.). Illumination through the FTO side (backside illumination) was used. All illuminated areas were 0.28 cm² by masking with Teflon tape. Photocurrents were measured either while sweeping the potential to the positive direction with a scan rate of 10 mV/s or while applying a constant bias under AM 1.5G illumination (100 mW cm²).

Incident photon-to-current efficiency, IPCE (%) at each wavelength was determined using the following equation:

IPCE (%) =
$$\frac{1240 \text{ x } J_{\text{ph}} \text{ x } 100}{\mathsf{P}_{\text{light}} \text{ x } \lambda}$$

where J_{ph} , P_{light} , and λ refer to the photocurrent density in mA/cm², incident photon flux in mW/cm², and wavelength in nm, respectively. IPCE was measured at 1.23 V vs. RHE in 0.1 M K-Pi solution (pH 7) using the same three-electrode setup described above for photocurrent measurements. Absorbed photon-to-current efficiency (APCE) at 1.23 V vs. RHE was obtained by dividing the IPCE (%) by the light harvesting efficiency (LHE) at each wavelength using the following equations.

APCE (%) =
$$\frac{IPCE (\%)}{LHE}$$

where, LHE = 1- 10 $^{-A(\lambda)}$ (A(λ): absorbance at wavelength λ)

In order to calculate the maximum photocurrent density (J_{max}) that can be achieved by BiVO₄ assuming 100% IPCE, the National Renewable Energy Laboratory (NREL) reference solar spectral irradiance at AM 1.5G (radiation energy, W/m².nm) *vs.* wavelength (nm) was first converted to the solar energy spectrum in terms of the number of photons (s⁻¹.m⁻².nm⁻¹) *vs.* wavelength (nm). Then, the total number of photons in the wavelength range of 280-530 nm (absorption range of the current EMI s-m BiVO₄, band gap = 2.4 eV) were summated and converted to current density (7.7 mA/cm²). In order to calculate the photocurrent density that can be achieved with 100% APCE (J_{abs}), the LHE at each wavelength was multiplied during each step of the number pf photons calculation.

Photoelectrolysis and oxygen and hydrogen measurements. Bulk electrolysis was performed in a gas tight one-compartment cell: The cell was filled with 0.1 M K-Pi solution. The solution was degased by Ar for 20 min. A FTO/EMI s-m BiVO₄ (0.28 cm²) and Ag/AgCl (3 M NaCl) working and reference electrodes were inserted close to each other and a Pt foil (20 cm²) was used as a counter electrode.

Product analysis.

 O_2 and H_2 gas calibration curve constructions: The electrolysis cell was filled with 0.1 M K-Pi solution (10 mL), the solution was then purged with Ar gas for 30 min then the cell was closed and different known amounts of O_2 and H_2 gases were introduced to the headspace then 500 µl of the headspace gas was taken with a gastight syringe and analyzed the samples on a GC. The areas of the H₂ peak (at 0.9 min retention time) and that of O_2 (at 1.3 min retention time) were used for calibration of H₂ and O_2 , respectively.

The calibration curves for H_2 and O_2 were then used to determine the generated O_2 and H_2 gases produced from the bulk electrolysis experiments.

Figure S1. Actual photos of FTO/EMI s-m BiVO₄ photoanodes with different transparency (top) and SEM image (cross section, bottom) of the most active FTO/EMI s-m BiVO₄ photoanode.

Figure S2. Top view SEM images of FTO/EMI s-m BiVO₄ (right) and EMI free FTO/BiVO₄ (left) photoanodes at different magnification.

Figure S3. (a) UV-vis of the FTO/EMI s-m BiVO₄ photoanode; Inset Tauc plot derived from the UV-vis spectrum (b) its LHE- λ relationship.

Figure S4. XP spectral region of S 2p that hampered by the strong Bi 4f peaks of FTO/BiVO₄ (black line) and FTO/EMI s-m BiVO₄ (red line).

Figure S5. (a) *J-E* curves at 10 mV/s scan rate under backside AM 1.5, 100 mA/cm² illuminations in a 0.1 M K-Pi buffer solution (pH 7.0) of the untreated FTO/EMI s-m BiVO₄ photoanode (red line) and that photocharged at 0.65 V for 1-h (blue line), 2-h (green line) and 18-h (black line). The *J-E* curve under dark is shown as red dotted line. (b) *J-t* profile recorder at 1.23 V of FTO/EMI s-m BiVO₄ photoanode photocharged for 18-h in 0.1M K-Pi (pH 7.0) under backside AM 1.5, 100 mW/cm² illumination.

Figure S6. (a) Surface FT-IR spectra of Ti/TiO₂ electrode (blue line) and that modified with Co(bpy-P)₂ (red line). **(b)** Reflectance UV-vis spectra of Ti/TiO₂ electrode (blue line) and that modified with Co(bpy-P)₂ (red line). **(c)** CV of Ti/TiO₂ electrode (blue line) and that modified with Co(bpy-P)₂ (red line) in 0.1 M K-Pi buffer solution (pH 7) at 50 mV/s scan rate. **(d)** *J*-*t* profile of Ti/TiO₂ blank (blue line) and that modified with Co(bpy-P)₂ (red line) in 0.1 M K-Pi buffer solution (pH 7) at 50 mV/s scan rate. **(d)** *J*-*t* profile of Ti/TiO₂ blank (blue line) and that modified with Co(bpy-P)₂ (red line).

Figure S7. XRD patterns of FTO/EMI s-m BiVO₄ photoanode (red line) and that modified with tri-layers WOCs (black line).

Figure S8. APCE of FTO/EMI s-m BiVO₄ photoanode (red line) and that modified with ternary WOCs (black line).

- 1 I. Gillaizeau-Gauthier, F. Odobel, M. Alebbi, R. Argazzi, E. Costa, C. A. Bignozzi, P. Qu and G. J. Meyer, *Inorg. Chem.*, 2001, **40**, 6073–6079.
- 2 X. Zhou, T. Zhang, C. W. Abney, Z. Li and W. Lin, *ACS Appl. Mater. Interfaces*, 2014, **6**, 18475–18479.
- 3 S. Yamaguchi, R. Khanna, T. Matsushita, A. Wang, T. Ohta, Y. Naruta and H. Takadama, *RSC Adv.*, 2015, **5**, 47876–47883.
- 4 T. W. Kim and K.-S. K.-S. Choi, *Science*, 2014, **343**, 990–994.