Electronic Supplementary Information

Effective charge-discriminated group separation of metal ions under

highly acidic condition using nanodiamond-pillared graphene oxide

membrane

Lei Wang,^a Xinghua Guo,^a Kecheng Cao,^b Bo Li,^a Yang Li,^a Meicheng Zhang,^a Rui Wen,^a Xing Li,^a Shoujian Li,^{*a} Lijian Ma^{*a}

^aCollege of Chemistry, Sichuan University, Key Laboratory of Radiation Physics & Technology, Ministry of Education, No. 29 Wangjiang Road, Chengdu, 610064, P. R. China

^bCentral Facility for Electron Microscopy, Group of Electron Microscopy of Materials Science, Ulm University, 89081 Ulm, Germany

*E-mail: sjli000616@scu.edu.cn (S.L.); ma.lj@hotmail.com (L.M.).

Experiment Sections:

- 1. Section S1. (Fig. S1) Effect of different ND:GO ratio on the separation ability of NPG membranes.
- 2. Section S2. (Fig. S2) The species distribution of the metal ions tested.

Captions:

- 3. Table S1. Hydrated diameters (r_H) of the cations involved in the experiment.
- **4. Table S2.** *S*_{ion}^{*} and Relative Standard Deviation (RSD) of bivalent transition cations and trivalent lanthanide cations permeating through the as-prepared nanofiltration membrane for 6 hours.
- **5. Table S3.** The permeation flux and the S_{ion} data of NPG nanofiltration membrane in reusability experiments.
- 6. Fig. S1 Effect of different ND:GO ratio on the separation ability of NPG membranes.
- 7. Fig. S2 The species distribution of the metal ions tested.
- 8. Fig. S3 The TEM image of pristine ND nanoparticles.
- 9. Fig. S4 The schematic diagram of the preparation procedure.
- **10.** Fig. S5 (a-c) XPS O1s high-resolution spectra of GO, ND and NPG.
- **11.** Fig. S6 The cross-section SEM image of CA-CN base membrane.

Section S1. Effect of different ND:GO ratio on the separation ability of NPG membranes.

As a preliminary experiment, the separation performance of NPG membranes with different ND:GO ratio were investigated. Three kinds of NPG membranes were prepared, the mass ratio were ND:GO=1:1 (marked as NPG-11), ND:GO=1:3 (marked as NPG-13), and ND:GO=1:6 (marked as NPG-16), respectively. Then, the selectively permeation ability of the membranes were investigated in 4M HNO₃ solution, and the results were shown in Fig. S1. All the asprepared NPG membranes exhibited the ability of charge-discriminated group separation to different extents in the permeation rate and the ion-selectivity. It is clear that the NPG membrane with ratio of ND:GO=1:3 could be a better option. It is worth mentioning that NPG-11 membrane had crumbled naturally after 48 h exposure to the atmosphere, while NPG-13 and NPG-16 membranes remained visually unchanged.

Fig. S1 The permeation flux, cation selectivity and the digital photograph (exposure to the atmosphere for 48 h) of NPG-16 (a, d, g), NPG-13 (b, e, h), and NPG-11(c, f, i) membranes.

Section S2. The species distribution of the metal ions tested.

Using the chemical speciation program CHEMSPEC $(C^{++})^1$, the species distribution of the metal ions used in the experiments was calculated to the best of our ability. The species distribution of Na⁺, K⁺, Co²⁺, Ni²⁺, Eu³⁺, UO₂²⁺ and Th⁴⁺ were shown in Fig S6 respectively. The lack of the species distribution data of Zn²⁺, La³⁺, Nd³⁺ is due to the shortage of relative data in the original program.

Fig. S2 The species distribution of Na⁺, K⁺, Co²⁺, Ni²⁺, Eu³⁺, UO₂²⁺ and Th⁴⁺ in different concentrated nitric acid solution.

6. J. Zhu, X. Wang, T. Chen and C. Liu, Scientia Sinica Chimica, 2012, 42, 856-864.

Table S1. Hydrated diameters (r_H) of the cations involved in the experiments.²⁻⁵

ion	Na ⁺	K^+	Co ²⁺	Ni ²⁺	Zn^{2+}	La ³⁺	Nd ³⁺	Eu ³⁺	UO_2^{2+}	Th ⁴⁺
$r_{\rm H}({ m \AA})$	7.161	6.621	8.46 ¹	8.081	8.60 ¹	9.22 ²	9.22 ²	9.30 ²	11.63	8.44

1. E. R. Nightingale, The Journal of Physical Chemistry, 1959, 63, 1381-1387.

2. F. David, V. Vokhmin and G. Ionova, J. Mol. Liq., 2001, 90, 45-62.

3. T. Yamaguchi, Y. Sakamoto, S. Nakayama and T. T. Vandergraaf, J. Contam. Hydrol., 1997, 26, 109-117.

4. G. Johansson, M. Magini and H. Ohtaki, J. Solution Chem., 1991, 20, 775-792.

	Co ²⁺	Ni ²⁺	Zn^{2+}	average S_{ion}	RSD
$S_{\rm ion}$ (GO) %	12.04	11.99	12.66	12.23	±2.48
$S_{\rm ion}$ (NPG) %	11.08	11.15	11.52	11.25	±1.72
	La ³⁺	Nd ³⁺	Eu ³⁺	average S _{ion}	RSD
$S_{\rm ion}$ (GO) %	4.00	4.60	5.04;	4.55	±9.32
$S_{\rm ion}$ (NPG) %	5.50	5.55	5.55	5.54	±0.39

Table S2. S_{ion}^* and Relative Standard Deviation (RSD) of bivalent transition cations and trivalent lanthanide cations after permeating through the as-prepared nanofiltration membrane for 6 hours.

*S*_{ion}*: ion-selectivity

$$S_{ion} = \frac{c_{ion}}{c_{total}} \times 100\%$$

 c_{ion} is the concentration of the particular cation and c_{total} is the sum of the concentration of all cations in the permeate part.

Table S3. The permeation flux and the S_{ion} data of NPG nanofiltration membrane in reusability experiments.

Thist toulia C	n iecych	ng exper	mients.							
	Na ⁺	K^+	Co ²⁺	Ni ²⁺	Zn^{2+}	La ³⁺	Nd ³⁺	Eu ³⁺	UO_2^{2+}	Th^{4+}
permeation										
flux at 6 h	0.085	0.096	0.050	0.050	0.051	0.024	0.025	0.026	0.037	0.012
(mol L ⁻¹										
m ⁻²)										
S_{ion} (%)	19.1	21.4	11.1	11.1	11.5	5.5	5.5	5.8	6.1	2.8

First round of recycling experiments.

Third round of recycling experiments.

	Na ⁺	K^+	Co ²⁺	Ni ²⁺	Zn^{2+}	La ³⁺	Nd^{3+}	Eu ³⁺	$UO_2{}^{2+}$	Th^{4+}
permeation										
flux at 6 h	0.079	0.087	0.045	0.048	0.049	0.024	0.023	0.023	0.026	0.012
(mol L ⁻¹										
m ⁻²)										
S_{ion} (%)	19.1	21.0	10.8	11.4	11.8	5.7	5.6	5.5	6.2	2.9

Fifth round of recycling experiments.

		mg empe	•••••••••••••••••••••••••••••••••••••••							
	Na ⁺	K ⁺	Co ²⁺	Ni ²⁺	Zn ²⁺	La ³⁺	Nd^{3+}	Eu ³⁺	UO_2^{2+}	Th ⁴⁺
permeation										
flux at 6 h	0.073	0.081	0.045	0.046	0.047	0.024	0.021	0.022	0.024	0.010
(mol L ⁻¹										
m ⁻²)										
S_{ion} (%)	18.5	20.6	11.4	11.6	11.9	6.2	5.3	5.7	6.1	2.7

Fig. S3 The TEM image of pristine ND nanoparticles.

Fig. S4 The schematic diagram of the preparation procedure of NPG nanofiltration membrane.

The O1s high-resolution XPS of three kinds of nanomaterials is shown in Fig. S5. The peaks located at around 533.0 and 532.0 eV can be ascribed to C-O (epoxy and hydroxyl) and C=O (carbonyl and carboxyl) respectively.⁶

Fig. S5 XPS O1s high-resolution spectra of GO, ND and NPG.

5. C. M. Chen, J. Q. Huang, Q. Zhang, W. Z. Gong, Q. H. Yang, M. Z. Wang and Y. G. Yang, *Carbon*, 2012, **50**, 659-667.

Fig. S6 The cross-section SEM image of CA-CN base membrane.