Supporting Information for

An acid-stable hexaphosphate ester-based metal-organic framework and its polymer composite as proton exchange

membrane

Kun Cai,^a Fuxing Sun,^a Xiaoqiang Liang,^a Cong Liu,^b Nian Zhao,^a Xiaoqin Zou^a and Guangshan Zhu*^a

^{a.} State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, PR China. *E-mail: zhugs@jlu.edu.cn; Fax: +86 431-8516-8331, Tel: +86-431-85168887.

^{b.} Key Laboratory of Polyoxometalate Science of the Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China.

^c College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Xi'an, 710048, PR China.

^d Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun, 130012, PR China.

Fig. S1 The asymmetric unit of the JUC-200

Fig. S2 Viewed along the *c*-axis of the JUC-200 framework

Fig. S3 The PXRD patterns of the JUC-200 immersed in different solvents. (a) The simulated spectrum of the JUC-200. (b) 80 °C water for 3 days. (c) Methanol for 7 days. (d) Ethanol for 1 day. (e) DMF for 1 day.

Fig. S4 The PXRD patterns of the JUC-200 soaked in different pH values. (a) The simulated spectrum of the JUC-200. (b) to (e) showed the PXRD of the JUC-200 soaked in different HCl aqueous solution (pH=2, 3, 4, 5) 7 days, respectively.

Fig. S6 The PXRD patterns of JUC-200@PVA composite membranes with various contents

Fig. S7 The SEM images shows the surface of the JUC-200@PVA-50 composite membrane.

Fig. S8 The Nyquist plot of the JUC-200 at 80 °C in the water.

Fig. S9 The Nyquist plot of the pure PVA.

Fig. S10 The Nyquist plot of the JUC-200@PVA-10 with different temperature. The circuit model used for the data fitting of JUC-200@PVA-10 and the enlarged part of the plot were shown as inset.

Identification code	aaa_sq	
Empirical formula	C12 H44 O62 P12 Zn10	
Formula weight	2205.81	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 11.962(2) Å	$\alpha = 104.12(3)^{\circ}$.
	b = 14.897(3) Å	β=91.11(3)°.
	c = 22.540(5) Å	$\gamma = 106.09(3)^{\circ}$.
Volume	3726.3(15) Å ³	

Table S1. Crystallographic Data and Details of Refinements for JUC-200

Ζ	2
Density (calculated)	1.966 Mg/m ³
Absorption coefficient	3.526 mm ⁻¹
F(000)	2184
Crystal size	0.220 x 0.200 x 0.180 mm ³
Theta range for data collection	2.257 to 28.346°.
Index ranges	-15<=h<=15, -19<=k<=19, -30<=l<=30
Reflections collected	85450
Independent reflections	18485 [R(int) = 0.1292]
Completeness to theta = 25.242°	99.6 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	18485 / 220 / 871
Goodness-of-fit on F ²	1.002
Final R indices [I>2sigma(I)]	R1 = 0.0786, $wR2 = 0.1670$
R indices (all data)	R1 = 0.1388, wR2 = 0.1869
Extinction coefficient	n/a

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(15)-H(15)O(61)#6	0.82	2.03	2.848(9)	171.8
O(21)-H(21)O(15)#6	0.84	1.93	2.450(8)	119.0
O(33)-H(33)O(45)#5	0.82	1.61	2.426(7)	169.7
O(45)-H(45)O(52)	0.82	2.61	3.123(7)	121.6
O(49)-H(49A)O(45)	0.99	1.85	2.790(8)	157.0
O(49)-H(49B)O(33)	0.99	2.13	3.103(8)	166.4
O(50)-H(50A)O(42)#5	0.97	1.92	2.840(8)	157.8
O(50)-H(50B)O(28)	0.98	2.28	2.975(8)	127.6

Table S2. Hydrogen bonds for JUC-200 [Å and °]

O(51)-H(51A)O(58)#2	1.00	2.00	2.976(9)	164.6
O(52)-H(52A)O(43)	1.00	1.78	2.776(7)	168.5
O(54)-H(54B)O(25)#2	1.00	1.87	2.788(8)	150.8
O(55)-H(55A)O(33)	1.00	2.13	2.974(8)	141.2
O(55)-H(55B)O(41)#5	1.02	2.53	3.210(8)	123.6
O(55)-H(55B)O(44)#5	1.02	2.38	3.310(8)	152.2
O(56)-H(56A)O(54)#2	1.01	1.90	2.838(11)	154.2
O(56)-H(56B)O(42)#7	1.00	2.54	3.298(9)	131.8
O(57)-H(57A)O(17)#1	1.02	2.45	3.021(12)	114.4
O(58)-H(58A)O(38)#7	1.02	1.64	2.624(9)	160.7
O(60)-H(60B)O(19)#6	0.99	1.84	2.768(10)	154.8
O(61)-H(61A)O(21)#6	1.00	1.72	2.698(8)	164.1
O(61)-H(61B)O(15)#6	1.01	1.85	2.848(9)	169.1
O(62)-H(62A)O(34)#6	1.00	1.77	2.736(9)	161.4
O(62)-H(62B)O(4)	1.00	2.54	3.392(8)	143.8
O(62)-H(62B)O(23)	1.00	1.84	2.751(9)	150.8
C(3)-H(3)O(21)	0.98	2.34	2.883(10)	114.5
C(5)-H(5)O(26)	0.98	2.52	2.997(9)	110.1
C(8)-H(8)O(57')#6	0.98	2.02	2.76(2)	130.5
C(9)-H(9)O(39)	0.98	2.43	2.947(10)	112.3
C(9)-H(9)O(49)#5	0.98	2.60	3.528(9)	158.0
C(11)-H(11)O(45)	0.98	2.35	2.886(9)	113.3

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z+1 #2 -x+1,-y+2,-z+1 #3 -x+1,-y,-z #4 -x+2,-y+1,-z #5 -x+1,-y+1,-z #6 -x+1,-y+1,-z+1 #7 x,y+1,z+1

Table S3. List of some proton conduction compounds

	1			1
Compounds	Conductivity	Analysis conditions	Stability	Ref.
	(S·cm ⁻¹)			
UiO-66(SO ₃ H) ₂	8.4×10-2	80 °C, 90 RH%	postsynthetic in	1
			0.02M H ₂ SO ₄	
H ⁺ @Ni(dobdc)	2.2×10-2	80 °C, 95 RH%	pH=1.8	2
TfOH@MIL-101	8×10-2	60 °C, 15 RH%	anhydrous acid	3
JUC-200	1.62×10-3	80 °C, 100RH%	water and acid	this work
PCMOF-10	3.55×10-2	70 °C, 95 RH%	water	4
PCMOF-5	4×10-3	60 °C, 98 RH%	water	5
PCMOF2 ¹ / ₂	2.1×10-2	85 °C, 90 RH%		6
La(H ₅ DTMP)·7H ₂ O	8×10-3	24 °C, 98 RH%		7
$(NH_4)_2(adp)[Zn_2(ox)_3]\cdot 3H_2O$	8×10-3	25 °C, 98 RH%		8
Cu-TCPP nanosheet	3.9×10-3	25 °C, 98 RH%		9

Cd-5TIA	3.61×10-3	28 °C, 98 RH%		10
In-IA-2D-1	3.4×10-3	27 °C, 98 RH%		11
$V^{II}[Cr^{III}(CN)_6]_{2/3} \cdot 4.2H_2O$	2.6×10-3	50 °C, 100 RH%		12
$[\{(Zn_{0.25})_8(O)\}Zn_6(L)_{12}(H_2O)_{29}(DMF)_{69}(NO_3)_2]_n$	2.3×10-3	25 °C, 95 RH%		13
$Co^{II} [Cr^{III}(CN)_6]_{2/3} \cdot 4.8H_2O$	1.7×10-3	35 °C, 100 RH%		12
MgH ₆ ODTMP·6H ₂ O	1.6×10-3	19 °C, 100 RH%		14
β-PCMOF2	1.3×10-3	85 °C, 90 RH%		6
Fe(Ox)·2H ₂ O	1.3×10-3	25 °C, 98 RH%		15
$\{[Ca(D-Hpmpc)(H_2O)_2] \cdot 2HO_{0.5}\}_n$	8.9×10-4	60 °C, 97 RH%		16
Ca-PiPhtA-I	5.7×10-4	24 °C, 98 RH%		17
In-IA-2D-2	4.2×10-4	27 °C, 98 RH%		11
GdHPA-II	3.2×10-4	21 °C, 98 RH%	water	18

Note: the "-----" shows that the article does not report the stability of the compound.

Reference:

- 1 W. J. Phang, H. Jo, W. R. Lee, J. H. Song, K. Yoo, B. Kim and C. S. Hong, *Angew. Chem. Int. Ed.*, 2015, **54**, 5142-5146.
- W. J. Phang, W. R. Lee, K. Yoo, D. W. Ryu, B. Kim and C. S. Hong, *Angew. Chem. Int. Ed.*, 2014, 53, 8383-8387.
- 3 D. N. Dybtsev, V. G. Ponomareva, S. B. Aliev, A. P. Chupakhin, M. R. Gallyamov, N. K. Moroz, B. A. Kolesov, K. A. Kovalenko, E. S. Shutova and V. P. Fedin, ACS Appl. Mater. Interfaces, 2014, 6, 5161-5167.
- 4 P. Ramaswamy, N. E. Wong, B. S. Gelfand and G. K. H. Shimizu, J. Am. Chem. Soc., 2015, 137, 7640-7643.
- 5 J. M. Taylor, K. W. Dawson and G. K. H. Shimizu, J. Am. Chem. Soc., 2013, 135, 1193-1196.
- 6 S. Kim, K. W. Dawson, B. S. Gelfand, J. M. Taylor and G. K. H. Shimizu, J. Am. Chem. Soc., 2013, 135, 963-966.
- 7 R. M. Colodrero, P. Olivera-Pastor, E. R. Losilla, M. A. Aranda, L. Leon-Reina, M. Papadaki, A. C. McKinlay, R. E. Morris, K. D. Demadis and A. Cabeza, *Dalton Trans*, 2012, **41**, 4045-4051.
- 8 M. Sadakiyo, T. Yamada and H. Kitagawa, J. Am. Chem. Soc., 2009, **131**, 9906-9907.
- 9 G. Xu, K. Otsubo, T. Yamada, S. Sakaida and H. Kitagawa, J. Am. Chem. Soc., 2013, **135**, 7438-7441.
- 10 T. Panda, T. Kundu and R. Banerjee, Chem. Commun., 2012, 48, 5464-5466.
- 11 T. Panda, T. Kundu, R. Banerjee, Chem. Commun. 2013, 49, 6197-6199
- 12 S. Ohkoshi, K. Nakagawa, K. Tomono, K. Imoto, Y. Tsunobuchi, H. Tokoro, J. Am. Chem. Soc., 2010, **132**, 6620-6621.
- 13 S. Sen, N. N. Nair, T. Yamada, H. Kitagawa, P. K. Bharadwaj, J. Am. Chem. Soc., 2012, 134, 19432-19437.
- 14 R. M. Colodrero, P. Olivera-Pastor, E. R. Losilla, D. Hernandez-Alonso, M. A. Aranda, L. Leon-Reina, J. Rius, K. D. Demadis, B. Moreau, D. Villemin, M. Palomino, F. Rey, A. Cabeza, *Inorg. Chem.* 2012, **51**, 7689-7698
- 15 T. Yamada, M. Sadakiyo, H. Kitagawa, J. Am. Chem. Soc., 2009, 131, 3144-3145.
- 16 X. Liang, F. Zhang, W. Feng, X. Zou, C. Zhao, H. Na, C. Liu, F. Sun, G. Zhu, *Chem. Sci.*, 2013, **4**, 983-992.
- 17 M. Bazaga-Garcia, R. M. Colodrero, M. Papadaki, P. Garczarek, J. Zon, P. Olivera-Pastor, E. R. Losilla, L. Leon-Reina, M. A. Aranda, D. Choquesillo-Lazarte, K. D. Demadis, A. Cabeza, J. Am. Chem. Soc., 2014, 136, 5731-5739.
- R. M. P. Colodrero, K. E. Papathanasiou, N. Stavgianoudaki, P. Olivera-Pastor, E. R. Losilla, M. A. G. Aranda, L. León-Reina, J. Sanz, I. Sobrados, D. Choquesillo-Lazarte, J. M. García-Ruiz, P. Atienzar, F. Rey, K. D. Demadis, A. Cabeza, *Chem. Mater.*, 2012, **24**, 3780-3792.