Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Light-induced generation of free radicals by fullerene derivatives: an

important degradation pathway in organic photovoltaics?

Liana N. Inasaridze^a, Alexander I. Shames^b, Iliya V. Martynov^a, Baili Li^c, Alexander V. Mumyatov^a, Diana K. Susarova^a, Eugene A. Katz^d and Pavel A. Troshin^{*a, e}

^a The Institute for Problems of Chemical Physics of the Russian Academy of Sciences, Semenov

Prospect 1, Chernogolovka, 141432, Russia. *E-mail: troshin2003@inbox.ru.

^{*b*} Department of Physics, Ben-Gurion University of the Negev, P. O. Box 653, Be'er Sheva 84105, Israel.

^c Department of Solar Energy and Environmental Physics, J. Blaustein Institutes for Desert

Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midershet Ben-Gurion, Israel.

^{*d*} Ilse Katz Institute of Nano-Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel

^e Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow, 143026, Russia

Fig. S1. Photograph of the sample stage for outdoor aging of organic solar cells and thin films sealed between the glass plates or inside the glass tubes.

Fig. S2. Evolution of the V_{OC} (a), J_{SC} (b), FF (c) and PCE (d) of the devices as a function of the sunlight exposure time.

Fig. S3. AFM images of the PCDTBT/[60]PCBM, PCDTBT/**F1** and PCDTBT/**F2** blend films before and after illumination at 60 °C for 40 h.

Fig. S4. GPC profiles of the PCDTBT/[60]PCBM (a) and PCDTBT/**F2** (b) blends before and after exposure to the sunlight (the PCDTBT peak at 5-6 min is not shown).

Fig. S5. Evolution of the UV-VIS spectra of the PCDTBT/[60]PCBM (a), PCDTBT/F1 (b) and PCDTBT/F2 (c) blends under exposure to the sunlight.