Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Binary Metal Organic Frameworks Derived Hierarchical Hollow Ni₃S₂/Co₉S₈/N-

doped Carbon Composite with Superior Sodium Storage Performance

Xinye Liu^a[†], Feng Zou^a[†], Kewei Liu^a, Zhe Qiang^b, Clinton J. Taubert^a, Putu

Ustriyanaa^a, Bryan D. Vogt^b and Yu Zhu*a

^a Department of Polymer Science, University of Akron, Akron, Ohio 44325, United

States

^b Department of Polymer Engineering, University of Akron, Akron, OH, 44325,

United States

*Address correspondence to: Yu Zhu (yu.zhu@uakron.edu)

[†] These authors contribute equally to this work

Figure S1. ICP test results for Ni and Co elements. The sample was prepared by dissolving 50 mg MOF precursor in 500 ml 4 wt% HNO₃ (100 ppm).

Figure S2. XRD pattern of Ni-Co-MOF.

Figure S3. TGA of Ni-Co-MOF under N_2 with a temperature ramp rate of 5 °C/min.

```
DATE 08 02 17 TIME 11 15 58 OPERATOR ID QUICK
RUN 1 ID MSNC1 WEIGHT 1.974
                              SIGNALS
                              ZR 8451
   CARBON 19.24% NR 9485
HYDROGEN .41% CR 15420
NITROGEN 9.19% HR 15906
    BLANKS 6 133 23
    KFACTORS 15.614 43.562 5.572
    OXFILL COMB BOOST1 BOOST2
     3 10 1 0
FILL TIME 22 SECONDS
DATE 08 02 17 TIME 11 20 56 OPERATOR ID QUICK
RUN 2 ID MSNC2 WEIGHT 1.610
                              SIGNALS
                              ZR 8449
   CARBON 19.34%
HYDROGEN .37%
NITROGEN 9.31%
                              NR 9307
                              CR 14174
                             HR 14567
   BLANKS 6 133 23
   KFACTORS 15.614 43.562 5.572
   OXFILL COMB BOOST1 BOOST2
     3 10 1 0
FILL TIME 22 SECONDS
```

Figure S4. CHN analysis results for the Ni₃S₂/Co₉S₈/N-doped carbon composite

Figure S5. TGA of $Ni_3S_2/Co_9S_8/N$ -doped carbon composite under air with a temperature ramp rate of 5 °C/min.

Figure S6. Nitrogen adsorption-desorption isotherm of the $Ni_3S_2/Co_9S_8/N$ -doped carbon composite (BET surface area: 41.5 m²g⁻¹)

Calculation of crystal sizes based on the Scherrer equation

$$D = \frac{K\lambda}{\beta\cos\theta}$$

D: grain size
K: shape factor, (0.9)
λ: X-ray wavelength (nm)
β: full width at half the maximum intensity (FWHM)
θ: Bragg angle

The XRD pattern is shown in Figure 2b. The X-ray wavelength is 1.541 Å. Peak (1-10) of Ni_3S_2 (2 θ =31.245°) and peak (440) of Co_9S_8 (2 θ =52.104°) are used for calculation. The FWHMs are 0.232° and 0.269°, respectively.

For calculation, the FWHMs were converted into radian. The value of β for Ni₃S₂ and Co₉S₈ are 0.0040 and 0.0047, respectively.

Based on the Scherrer equation

 $\begin{array}{c} 0.9 * 0.154 \\ D(Ni_3S_2) = \overline{0.0040 cos~(15.625)} \ nm = 35.5 \ nm \\ \hline 0.9 * 0.154 \\ D(Co_9S_8) = \overline{0.0047 cos~(26.052)} \ nm = 32.4 \ nm \end{array}$

Table S1 Sodium storage performance comparison between our work and previous results.

Reference	Active Materials	Current	Capacity	Cycles	Retention
		Density	(mAh/g)		
		(A/g)			
Wang et al. ¹	NiS ₂ -GNS	0.08	314	200	77%
		1.6	168		

Shang et al. ²		0.6	280	30	88%		
0.000	N ₁₃ S ₂ -PEDOT	1.2	310				
Pan et al. ³	NiS-20rGO	Charge	160	10	88%		
		0.2					
		Discharge					
		0.05					
Song et al. ⁴	Rod-like	0.05	315.3	100	90.6%		
	Ni S /Ni	0.8	230				
	¹ ¹ ³ ³ ² ¹ ¹ ¹						
Kim et al. ⁵	Ni ₃ S ₂	0.05	342	16	81%		
Qin et al. ⁶	NiS-rGO	0.1	391.6	50	77.1%		
		1	346				
Zhang et al. ⁷	$\overline{\text{Core-shell Co}_{x}S_{y}}$	0.5	300	50	77%		
Du et al. 8	Co2S4-PNS/GS	0.5	329	50	71		
	00304 1110/00	2	307	50	/ 1		
Zhou et al ⁹	Co ₃ S ₄ @PANI	0.2	252.5	100	44%		
Zhou et ul.		2	189.3	100			
Ko et al. ¹⁰	Co ₉ S ₈ @carbon	0.5	404	50	80%		
		1.5	326				
Zhang et al. ¹¹	CuO/Cu ₂ O	0.05	415	50	/		
	_	1	217.3				
Feng et al. ¹²	NiO/Ni/Graphene	1	248	190	60%		
_	_	2	207				
This work	Ni ₃ S ₂ /Co ₉ S ₈ /N-	0.1	419.9	100	98.6%		
	doped carbon	2	323.2				
	composite						
* GNS: graphene nanosheets; PEDOT: poly(3,4-ethylenedioxythiophene); rGO:							
reduced graphene oxide; Co ₃ S ₄ -PNS/GS: Co ₃ S ₄ porous nanosheets/graphene sheets;							
PANI: polyaniline							

References

- 1. T. Wang, P. Hu, C. Zhang, H. Du, Z. Zhang, X. Wang, S. Chen, J. Xiong and G. Cui, *ACS Appl. Mater. Interfaces*, 2016, 8, 7811-7817.
- 2. C. Shang, S. Dong, S. Zhang, P. Hu, C. Zhang and G. Cui, *Electrochem. Comm.*, 2015, 50, 24-27.
- 3. Q. Pan, J. Xie, T. Zhu, G. Cao, X. Zhao and S. Zhang, *Inorg. Chem.*, 2014, 53, 3511-3518.

- 4. X. Song, X. Li, Z. Bai, B. Yan, D. Li and X. Sun, *Nano Energy*, 2016, 26, 533-540.
- 5. J.-S. Kim, H.-J. Ahn, H.-S. Ryu, D.-J. Kim, G.-B. Cho, K.-W. Kim, T.-H. Nam and J. H. Ahn, *J. Power Sources*, 2008, 178, 852-856.
- 6. W. Qin, T. Chen, T. Lu, D. H. C. Chua and L. Pan, *J. Power Sources*, 2016, 302, 202-209.
- Z. Zhang, Y. Gan, Y. Lai, X. Shi, W. Chen and J. Li, *RSC Adv.*, 2015, 5, 103410-103413.
- 8. Y. Du, X. Zhu, X. Zhou, L. Hu, Z. Dai and J. Bao, *J. Mater. Chem. A*, 2015, 3, 6787-6791.
- 9. Q. Zhou, L. Liu, Z. Huang, L. Yi, X. Wang and G. Cao, *J. Mater. Chem. A*, 2016, 4, 5505-5516.
- 10. Y. N. Ko and Y. C. Kang, *Carbon*, 2015, 94, 85-90.
- 11. X. Zhang, W. Qin, D. Li, D. Yan, B. Hu, Z. Sun and L. Pan, *Chem. Commun.*, 2015, 51, 16413-16416.
- 12. F. Zou, Y. M. Chen, K. Liu, Z. Yu, W. Liang, S. M. Bhaway, M. Gao and Y. Zhu, *ACS Nano*, 2016, 10, 377-386.