Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

A novel K-ion battery; hexacyanoferrate(II)/graphite cell

Xiaofei Bie¹, Kei Kubota^{1,2}, Tomooki Hosaka², Kuniko Chihara², and Shinichi Komaba^{1,2,*}

¹Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan

²Department of Applied Chemistry, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan

*corresponding author, <u>komaba@rs.kagu.tus.ac.jp</u>

Experimental Section

Materials: K-MnHCFe and K-FeHCFe powder were synthesized by precipitation method. Firstly, 2 mmol K₄Fe(CN)₆·3H₂O and 4 mmol MnCl₂·4H₂O or FeCl₂·4H₂O were dissolved into 80 and 40 ml saturated KCl solution at 25 °C. Then, these two solutions were slowly dropped together with magnetic stirring under N₂ atmosphere at 60 °C. 4 hours later, the precipitate formed was centrifuged and washed thoroughly with 1 L deionized water. At last, the final product was obtained after drying in air under 80 °C for 12 h.

Electrochemical Characterization: The positive electrodes consisted of 70 wt% active materials, 20 wt% Ketjen black carbon, and 10 wt% polytetrafluoroethylene (PTFE). The negative electrodes for the full cell consisted 90 wt% nature graphite (average particle size ≈ 3 μm) and 10 wt% carboxymethyl cellulose (CMC) binder 1 . The positive and negative electrodes formed on Al mesh and foil, respectively, were dried at 150 °C under vacuum. For K half-cell, metallic potassium (Aldrich) was used as a negative electrode. The electrolyte solution was 0.7 mol dm- 3 KPF₆ dissolved in EC:DEC (1:1) solvent (Kishida Chemical). A glass fiber filter (GB-100R, ADVANTEC) was used as a separator. R2032-type coin cells were assembled in Ar-filled glove box (dew point: < -70 °C).

Material Characterization: X-ray diffraction (XRD) data were collected using Multiflex (Rigaku Co., Ltd., Japan) with Cu Kα radiation at 40 kV and 20 mA. For operando XRD, in-situ battery cell equipped with Be window (Rigaku) was assembled and galvanostatically cycled at a current rate of 5 mA g⁻¹. The recording

time for one diffraction pattern is around 7 min. Morphology of as-prepared samples was observed by scanning electron microscope (SEM, S-5000, Hitachi). Thermal behavior of the synthesized powders (sample amount, 8 mg) was tested by TGA (Shimadzu DTG-60, Japan). Elemental ratio of K, Mn, and Fe was determined by ICP-AES analysis after dissolving the samples in HCl solutions.

Table S1 Structural parameters of K-MnHCFe and K-FeHCFe obtained from Rietveld analysis.

Sample K-MnHCFe

S.G. <i>P</i> 2 ₁ / <i>n</i> α=10.1126(7) Å, <i>b</i> =7.3285(9) Å, <i>c</i> =6.9711(5) Å, β=90.06(9)°						
Atom	Wyckoff.	х	у	Z	B _{iso} / Å ²	Осс
Mn	2 a	0	0.5	0.5	0.5(7)	1
Fe	2 a	0	0	0	0.5(7)	0.94(2)
N1	4e	0.4608(7)	0.2587(8)	0.8347(2)	1.2(1)	0.94(2)
N2	4e	0.0507(1)	0.3303(3)	0.7674(4)	1.2(1)	0.94(2)
N3	4e	0.1993(2)	0.4822(4)	0.3925(6)	1.2(1)	0.94(2)
C1	4e	0.5308(2)	0.6329(1)	0.2686(5)	1.2(1)	0.94(2)
C2	4e	0.9497(6)	0.7767(5)	0.1433(8)	1.2(1)	0.94(2)
C3	4e	0.6925(1)	0.5146(7)	0.5684(5)	1.2(1)	0.94(2)
K	4e	0.7549(4)	0.9368(7)	0.4817(4)	2.9(5)	0.89(5)
01	4e	=x(N1)	=y(N1)	=z(N1)	1.2(1)	0.06(2)
02	4e	=x(N2)	=y(N2)	=z(N2)	1.2(1)	0.06(2)
О3	4e	=x(N2)	=y(N2)	=z(N2)	1.2(1)	0.06(2)
04	4e	0.2718(8)	0.0767(4)	0.5548(1)	1.2(1)	0.11(2)
	R	_p =9.79 %, R _{wp} =	9.17 %, R _e =4.7	71 %, Chi2=3.7	85	

Sample K-FeHCFe

•	.G. <i>P</i> 2 ₁ / <i>n</i>	a=10.1250(9) Å	, b=7.2562(9) Å	, <i>c</i> =7.0238(1)	Å, β=89.68((3)°
Atom	Wyckoff.	х	у	Z	B _{iso} / Å ²	Осс
Fe1	2 a	0	0.5	0.5	1.0(9)	1
Fe2	2 a	0	0	0	1.0(9)	0.89(7)
N1	4e	0. 4905(3)	0. 2376(3)	0. 7926(7)	0.2(2)	0.89(7)
N2	4e	0. 0168(3)	0.2737(2)	0.7880(3)	0.2(2)	0.89(7)
N3	4e	0.2202(2)	0.5209(1)	0.4459(2)	0.2(2)	0.89(7)
C1	4e	0.5130(7)	0.6040(6)	0.2891(5)	0.2(2)	0.89(7)
C2	4e	0.9159(1)	0.7654(4)	0.1342(1)	0.2(2)	0.89(7)
C3	4e	0.6919(7)	0.5343(3)	0.5564(3)	0.2(2)	0.89(7)
K	4e	0.7536(4)	0.9444(7)	0.4832(2)	4.3(1)	0.82(4)
01	4e	=x(N1)	=y(N1)	=z(N1)	0.2(2)	0.11(2)
02	4e	=x(N2)	=y(N2)	=z(N2)	0.2(2)	0.11(2)
О3	4e	=x(N2)	=y(N2)	=z(N2)	0.2(2)	0.11(2)
04	4e	0.3478(7)	-0.0665(1)	0.7978(5)	0.2(2)	0.16(1)
		R _p =11.7 %, R _{wp} :	=9.87 %. R _s =7.7	7 %. Chi2=1.64	4	

Table S2ICP results.

K-MnHCFe						
element	K	Mn	Fe			
Mole ratio	1.75	1	0.93			
	K-FeHCFe					
element	К		Fe			
Mole ratio	0.88		1			

Figure S1 TG curves of K-MnHCFe and K-FeHCFe. The TGA test was conducted at a heating rate of 1 °C min⁻¹ under Ar gas flow. K-MnHCFe shows two slopes from room temperature to 240 °C, which are corresponding to 2.3% adsorbed and 0.9% interstitial water loss. And a rapid weight loss was observed above 240 °C, which indicates the compound decomposition. Similar behavior is found in the TGA curve of K-FeHCFe.

Figure S2 Charge-discharge profiles of (a,c) K-FeHCFe and (b,d) K-MnHCFe electrode in K half-cell with 1 M KFSI in EC: DEC (1:1) electrolyte under voltage range of (a,b) 2.0-3.8 and (c,d) 2.0-4.2 V.

Figure S3 (a) Initial charge-discharge profiles and **(b)** cycle performance of K-MnHCFe electrode in K half-cell with 0.7 M KPF $_6$ in EC:DEC (1:1) electrolyte with 0 % and 2 % FEC additive.

Figure S4 (a) In-situ XRD patterns of K-MnHCFe during initial cycle and indexed XRD patterns of K-MnHCFe electrodes under different charge state: (b) pristine electrode (monoclinic), (c) half charged electrode (cubic) and (d) fully charged (tetragonal).

Figure S5 (a) Scheme of K-MnHCFe framework with monoclinic (M), cubic (C) and tetragonal (T) lattices. **(b)** The evolution of lattice parameters along cubic axis a and c directions during initial charge-discharge. According to the scheme, lattice parameters of monoclinic and tetragonal could be normalized to those in a cubic lattice as:

$$a_C = \sqrt{b_M^2 + c_M^2} = \sqrt{a_T^2 + b_T^2}$$

$$c_C = a_M \times \sin\beta_M = c_T$$

Figure S6 XRD patterns of K-MnHCFe pristine electrode and the electrode after 100 cycles in the voltage range of 2.0-4.5 V at a current density of 30 mA $\rm g^{-1}$.

Figure S7 Charge-discharge profiles of graphite negative electrode in K half-cell with 0.7 M KPF $_6$ in EC:DEC (1:1) electrolyte with **(a)** 0 % FEC and **(b)** 2 % FEC additive.

Figure S8 (a) XRD patterns of K-MHCFe (M=Mn, Fe, Co, Ni, Cu), (b) initial charge-discharge curves of K-MHCFe.

Reference:

 S. Komaba, T. Hasegawa, M. Dahbi and K. Kubota, *Electrochem. Commun.* 2015, 60, 172-175.