Supporting Information

High perm-selectivity hyperbranched polyester/polyamide ultrathin film with nanoscale heterogeneity

Xin Kong,^a Ze-Lin Qiu,^a Chun-Er Lin,^a You-Zhi Song,^a Bao-Ku Zhu,^{a*} Li-Ping Zhu^a and Xiu-Zhen Wei^b

^a Key Laboratory of Macromolecule Synthesis and Functionalization (Ministry of Education), ERC of Membrane and Water Treatment (Ministry of Education), Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.

^b College of Environment, Zhejiang University of Technology, Hangzhou 310014, China

^{*} Corresponding author. Tel.: +86 57187953723. E-mail address: zhubk@zju.edu.cn (B.K. Zhu).

Figure S1. Molecular structures of HPEs Boltorn H χ (χ = 20, 30, 40)

Table S1. Pure water flux, water contact angle, porosity, mean effective pore diameter (μ_p) and geometric standard deviation (σ_p) of the PVC-UF substrate membrane.¹

Membrane	Pure water flux (L/m ² h)	Water contact angle (degree)	Porosity (%)	μ _p (nm)	σ_p
PVC-UF	280	74.6 ± 1.2	45.7	17.9	1.99

Figure S2. Interfacial reaction of PIP with TMC and the formed cross-linked polyamide structure. When n = 0, every acid chloride monomer is linked with 3/2 amine monomers to form a fully crosslinked structure with a chemical formula of $C_{15}H_{15}O_3N_3$. When m = 0, every acid chloride monomer reacts with one-amine monomers to form a fully linear structure with a chemical formula of $C_{13}H_{12}O_4N_2$.²⁻⁴

Mamhaana	Percentages of the species (%)				HPE content	
Memorane	<u>С</u> -С/ <u>С</u> -Н	<u>C</u> -OR	<u>C</u> -N	<u>C</u> =0	(wt%)	
5.0 nm	39.45	26.0	21.28	13.27	26.3	
7.07 nm	38.97	27.16	20.46	13.41	27.8	
8.66 nm	38.78	27.80	20.17	13.25	28.5	
10 nm	37.76	28.56	20.75	12.93	29.7	

Table S2. Percentages of the chemical species from the deconvolution of C1s core level spectra at different XPS detection depths for the H20/PIP membrane.

Figure S3. C1s narrow scan XPS spectra of the H20/PIP membrane at detection depths of (a) 5.0, (b) 7.1, (c) 8.7, and (d) 10 nm, respectively.

Figure S4. Variations of Na_2SO_4 rejection rates and permeate fluxes of the fabricated TFC membranes under various operation pressures.

Figure S5. Variations of Na₂SO₄ rejection rate and permeate flux of the H40/PIP membrane

at 0.4 MPa during 10 days continuous filtration.

References

- 1. X. Kong, M.-Y. Zhou, C.-E. Lin, J. Wang, B. Zhao, X.-Z. Wei and B.-K. Zhu, *Journal of Membrane Science*, 2016, **505**, 231-240.
- 2. S. Karan, Z. W. Jiang and A. G. Livingston, *Science*, 2015, **348**, 1347-1351.
- C. Y. Y. Tang, Y. N. Kwon and J. O. Leckie, *Journal of Membrane Science*, 2007, 287, 146-156.
- 4. S. H. Kim, S. Y. Kwak and T. Suzuki, *Environmental Science & Technology*, 2005, **39**, 1764-1770.