Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting information

Synthesis of nano-porous carbon and nitrogen doped carbon dots from an

anionic MOF: A trace cobalt metal residue in carbon dots promotes

electrocatalytic ORR activity

Sohini Bhattacharyya^a,[†] Bharathi Konkena^b,[†] Kolleboyina Jayaramulu^a, Wolfgang

Schuhmann^b* and Tapas Kumar Maji^a*

^a Molecular Materials Laboratory, Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India E-mail: tmaji@jncasr.ac.in

^b Analytical Chemistry - Centre for Electrochemical Sciences (CES), Ruhr-University Bochum, Universitätsstr. 150, D-44780 Bochum, Germany

[†]Both authors have contributed equally to this work.

Synthesis of $\{[Mg_3(ndc)_{2.5}(HCO_2)_2(H_2O)] \cdot [NH_2Me_2] \cdot 2H_2O \cdot DMF\}$ (1)

The compound **1** is synthesized by a solvothermal reaction between 1,4-naphthalene dicarboxylic acid (ndc) and MgNO₃.6H₂O in a dimethylformamide (DMF) medium at 120°C by a previously reported procedure.¹⁰

Preparation of Sample for Adsorption Measurement:

Adsorption isotherms of CO₂ at 195 K, 273 K and 298 K and N₂ at 77 K were recorded with the dehydrated sample using QUANTACHROME QUADRASORB-SI analyzer. To prepare the dehydrated sample of **NPC-1** and **NCD-1** approximately 100 mg of sample was taken in a sample holder and degassed at 160°C at 10^{-1} Pa vacuum for about 12 h prior to measurements. The dead volume of the sample cell was measured using He of 99.999% purity. The amount of adsorbed gas was calculated from the pressure difference ($P_{cal} - P_{e}$), where P_{cal} is the calculated pressure with no gas adsorption and P_{e} is the observed equilibrium pressure. All operations were computer-controlled and automatic.

Figures and Tables:

Fig. S1 (a) View of the 1D chain $Mg_3(\mu$ -COO)_{2.5}(μ -OCO)₂ of **1** along the *a* direction, (**b**) 3D networks of **1** in the *a* direction, (**c**) Photograph of the single crystals of **1** under the microscope, (**d**) Single crystal of **1** mounted on a glass fibre for X-ray diffraction.

Fig. S2 (a) FTIR spectrum for two different batches of **1**, (b) PXRD patterns of two batches of **1** synthesized for the preparation of NCD-1 and NPC-1, (c) EDX analysis showing the presence of Mg, N, C and O in **1**.

Table S1 Principal peaks in the IR spectrum of 1 (Fig. S2(a)).

Peak Position	Nature	Vibration
1269, 1374cm ⁻¹	Strong	C-N stretch
1640cm ⁻¹	Strong	C=O stretch
795cm ⁻¹	Strong	Aromatic C-H stretch
2809, 3063cm ⁻¹	strong, broad	N-H stretch

Fig. S3 (a) TGA profile of 1, (b) CO₂ adsorption isotherm at 195 K and N₂ adsorption isotherm at 77 K for 1.

TGA of 1

The initial ~6% weight loss till 100°C in **1** can be attributed to the loss of one coordinated water and two guest water molecules. The next ~ 8% weight loss till 170°C corresponds to the loss of one DMF molecule. Beyond this the framework decomposes continuously.¹⁰

Fig. S4 IR spectra of (a) NPC-1 and (b) NCD-1.

Table S2 Principa	l peaks in the	IR spectrum	of NPC-1	(Fig.	S4(a)).
-------------------	----------------	-------------	----------	-------	---------

Peak Position (cm ⁻¹)	Nature	Vibration
1160	Strong	C-O stretch
1385	weak, sharp	C-H rock
1550	Strong	Aromatic C-C stretch
1715	weak, sharp	C=O stretch
3290	broad, strong	O-H stretch

Peak Position (cm ⁻¹)	Nature	Vibration
826	short, sharp	Breathing mode for <i>s</i> -triazine ring system
1280	short, sharp	C-N stretch
1528	short, sharp	N-O stretch
1590	strong, sharp	Aromatic C-C stretch
1653	strong, sharp	C=C stretch
1700	strong, sharp	C=O stretch
3150	short, broad	N-H stretch
3650	weak, sharp	O-H stretch

Table S3 Principal peaks in the IR spectrum of NCD-1 (Fig. S4(b)).

Fig. S5 O1s spectrum in the XPS analysis of NPC-1.

Fig. S6 TEM images at different resolutions for NPC-1.

Figure S7 (a) CO₂ adsorption isotherms of NPC-1 at 273 K (black) and 293 K (pink). Pore size distributions of (b) NPC-1 and (c) NCD-1.

Fig. S8 (a) C1s and (b) O1s spectrum in the XPS analysis of NCD-1.

Fig. S9 TEM images at different resolutions for NCD-1.

Fig. S10 Band gap calculation of NCD-1 from Kubelka-Munk function.

Fig. S11 CV of NCD-1.

Fig. S12 (a) C1s spectrum of Co@CN (b) O1s spectrum of Co@CN.

Fig. S13 Electron diffraction pattern, TEM images and colour mapping of Co@CN.

Fig. S14 Tafel plots for (a) NCD-1 and (b) Co@CN.

Fig. S15 Comparison of ORR activity of Co@CN with Pt/C.

Fig. S16 ORR voltammograms recorded at 5 mV/s with **Co@CN** at different Co residues with 1600 rpm.

We examined the ORR activity of the catalyst using different concentrations of Co metal residues. As shown in **Fig. S16**, the amount 1.75 wt% Co could not improve the activity over that at 1.5wt%. There is only a noticeable change in diffusion currents.

Koutecky Levich Equation:

The kinetic parameters can be calculated on the basis of Koutecky-Levich equations:

$$\frac{1}{j} = \frac{1}{j_L} + \frac{1}{j_K} = \frac{1}{B\omega^{1/2}} + \frac{1}{j_K}$$

 $B = 0.62 nFC_0(D_0)^{2/3} \Box^{-1/6}$

$$j_K = nFkC_0$$

where j_K and j_L are the kinetic and diffusion-limiting current densities, ω is the angular velocity in rad s⁻¹, *n* is the number of the transferred electrons, C₀ (1.26x10⁻⁶ mol cc⁻¹) and D₀ (1.93x10⁻⁵ cc s⁻¹) are the bulk concentration and diffusion coefficient of O₂ in electrolyte, *v* (1.01x10⁻² cm² s⁻¹) is the kinematic viscosity of the electrolyte, and *k* is the electron-transfer rate constant.^[19] *n* and j_K can be determined from the slope and the intercept of the plots respectively.

Material	Onset Potential (V vs RHE)	Durability	Reference
NCD-1	0.72 V	28% decrease in <i>j</i> after 3 h at 0.58 V	
N-rich porous carbon	0.76 V	Negligible decrease in <i>j</i> after 1.1 h at 0.71 V	1
N doped mesoporous carbon	0.71 V	Not mentioned	2
N doped CNT	0.77 V	Not mentioned	3
N doped graphene	0.85 V	Not mentioned	4
N doped porous carbon	0.86 V	25% decrease in <i>j</i> after 7 h at 0.60 V	5

Table S4 Comparison of ORR activity of different N doped C materials in alkaline media

Table S5 Comparison of ORR activity of different Co doped N doped C materials in alkaline

 media

Material	Co doping %	Over-potential values at -1 mA/cm ² (V vs RHE)	Reference
Co@CN	1.5 wt%	~0.8 V	
Co ₃ O ₄ /rmGO	20 wt%	~0.85 V	6
Co-N-C800	5 wt%	~0.82 V	7
Co-N-C900	0.68 wt%	~0.8 V	8
MnCo ₂ O ₄ /N-rmGO	65-80 wt% of	~0.81 V	9
	MnCo ₂ O ₄		

References:

- [1] Pachfule, P.; Dhavale, V. M.; Kandambeth, S.; Kurungot, S.; Banerjee, R., *Chem. Eur. J.*, 2013, *19*, 974–980.
- [2] Silva, R.; Voiry, D.; Chhowalla, M.; Asefa, T., J. Am. Chem. Soc., 2013, 135, 7823-7826.
- [3] Sharifi, T.; Hu, G.; Jia, X.; Wågberg, T., ACS Nano, 2012, 6, 8904–8912.
- [4] Lai, L.; Potts, J. R.; Zhan, D.; Wang, L.; Poh, C. K.; Tang, C.;Gong, H.; Shen, Z.; Lin, J.;
 Ruoff, R. S., *Energy Environ. Sci.*, 2012, 5, 7936–7942.
- [5] Zhang, P.; Sun, F.; Xiang, Z.; Shen, Z.; Yun, J.; Cao, D., *Energy Environ. Sci.*, 2014, 7, 442–450.
- [6] Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Wang, J.; Regier, T.; Dai, H., *Nat. Mater.*, 2014, 10, 780-786.
- [7] Qian, Y.; Liu, Z.; Zhang, H.; Wu, P.; Cai, C., ACS Appl. Mater. Interfaces., 2016, 8, 32875-32886.
- [8] Guo, C.; Wu, Y.; Li, Z.; Liao, W.; Sun, L.; Wang, C.; Wen, B.; Li. Y., Chen, C.,
- Nanoscale Res. Lett., 2017, 12, 1-8.
- [9] Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H.; *J. Am. Chem. Soc.*, 2012, 134, 3517-3523.
- [10] Bhattacharyya, S.: Chakraborty, A.; Jayaramulu, K.; Hazra, A.; Maji, T. K.; *Chem. Commun.*, 2014, 50, 13567-13570.