Supporting Information

Nickel-Cobalt Oxides Supported on Co/N Decorated Graphene as

Excellent Bifunctional Oxygen Catalyst

Yongchao Hao,^a Yuqi Xu,^a Junfeng Liu^{*a} and Xiaoming Sun^{abc}

^a State Key Laboratory of Chemical Resource Engineering, Beijing 100029, P. R. China.

^b College of Energy, Beijing University of Chemical Technology, Beijing 100029, P. R. China

^c Beijing Advanced Innovation Centre for Soft Matter Science and Engineering, Beijing 100029, P. R. China

* To whom all the correspondences should be addressed.

Junfeng Liu: ljf@mail.buct.edu.cn

Fig. S1. The SEM images of ZIF-67 (a), ZIF-67-Ni (b), ZIF-67/GO (c) and the corresponding pyrolysis products $Co_3O_4/Co-NC$ (d), $Ni_xCo_yO_4/Co-NC$ (e), and $Co_3O_4/Co-NG$ (f).

Fig. S2. The SEM image of ZIF-67-Ni/GO.

Fig. S3. TEM (a) and HRTEM (b) images of ZIF-67-Ni.

Fig. S4. The element mapping of ZIF-67-Ni (a, b), ZIF-67-Ni/GO (c, d), Ni_xCo_yO₄/Co-NC (e, f).

Fig. S5. XRD patterns of precursors.

Fig. S6. The whole XPS spectra of $Ni_xCo_yO_4/Co-NG$.

Fig. S7. The N_2 absorption/desorption curves of four samples.

Fig. S9. The CV plots of four samples at different scan rates. (a) $Co_3O_4/Co-NC$, (b) $Ni_xCo_yO_4/Co-NC$, (c) $Co_3O_4/Co-NG$ and (d) $Ni_xCo_yO_4/Co-NG$.

1.09

1.14

1.10 1.11 1.12 1.13 Potential (V vs RHE)

1.14

1.10 1.11 1.12 1.13 Potential (V vs RHE)

1.09

Fig. S10. The TEM image of Co-NG prepared by removing the metal oxides with acid treatment from $Ni_xCo_yO_4/Co-NG$.

Fig. S11. The ORR (a) and OER (b) performance of $Ni_xCo_yO_4/Co-NG$, Co-NG and $Ni_xCo_yO_4$.