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General Methodology

All chemicals were reagent grade, purchased from Sigma Aldrich. Silica gel (Redisep silica, 40-

60 µ, 60 Å) was used to separate the products from the pristine fullerene. MALDI-TOF mass 

spectrometric measurements were obtained on a Bruker Microflex LRF mass spectrometer on 

reflector positive mode. The NMR spectra were recorded using a Bruker 400 MHz spectrometer. 

The UV/Vis-NIR spectra were taken using a Cary 5000 UV/Vis-NIR spectrophotometer using 

toluene solutions. Cyclic voltammetry (CV) experiments were carried out under an Argon 

atmosphere at room temperature using a CH Instrument Potentiostat. Scan rate for CV experiments 

was 100 mV/s. A one compartment cell with a standard three-electrode set up was used, consisting 

of a 1 mm diameter glassy carbon disk as the working electrode, a platinum wire as the counter 

electrode and a silver wire as the pseudo-reference electrode, in a solution of anhydrous o-DCB 

containing 0.05 M n-Bu4NPF6. Ferrocene was added to the solution at the end of each experiment 

as an internal standard. 
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Characterization of D-C60

Figure S1. 1H-NMR (400 MHz; CDCl3, 298 K) of D-C60.
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Figure S2. 13C-NMR (100 MHz; CDCl3, 298 K) of D-C60.
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Electrochemical Properties.

The electrochemical properties of PC61BM and D-C60 were measured by cyclic voltammetry (CV) 

on a glassy carbon electrode with o-dichlorobenzene (o-DCB) as solvent and n-Bu4NPF6 as 

supporting electrolyte. The reduction potentials are shown in Table 1. The reduction potentials of 

PC61BM and D-C60 are similar.

Figure S3. Cyclic voltammetric curves of D-C60 at a scan rate of 100 mV/s.

Table S1. Redox Potentials of PC61BM and D-C60.

Compound E0/- E-/-2 E-2/-3

PC61BM -1.03 -1.41 -1.90
D-C60 -1.05 -1.44 -1.92
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Figure S4. Measured space-charge limited J–V characteristics of the PC61BM and D-C60 for electron-only 

devices. The devices with a structure of ITO/Cs2CO3/ D-C60 (PC61BM)/Ca/Al were fabricated.
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Figure S5. Maximal steady-state photocurrent output at the maximum power point (for PC61BM based 

device at 0.80 V, and D-C60 based device at 0.82 V) and their corresponding power output.
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Figure S6. J-V curves of the inverted planar perovskite solar cells based on D-C60 and PC61BM with respect 

to forward and reverse scan directions (The scanning rate was 100 mV/s).
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Figure S7. Nyquist plots of the perovskite solar cells based on PC61BM and D-C60.

Table S2. Fitting parameters for EIS data under 1 sun illumination.

Device Rs(Ω) Rco(Ω) Cco(F) Rrec(Ω) CPEμ-T(F) CPEμ-p(F)
PC61BM 8.80 30.43 1.959E-8 92.85 0.02028 0.5734

D-C60 8.26 23.68 5.353E-8 146.7 0.02879 0.9543


