Supporting information for Computational investigation of CO₂ electroreduction on tin oxide and predictions of Ti, V, Nb and Zr dopants for improved catalysis

Karthikeyan Saravanan, Yasemin Basdogan, James Dean, and John A. Keith

February 26, 2017

1 Details of benchmark calculations

We used both Γ -point and k-point sampling in CP2K to benchmark bulk and surface properties. All Γ -point calculations on bulk structures required sufficiently large unit cells in order to get converged properties. The cohesive energy of α -Sn and SnO₂ reported in Table 1 calculated with Γ -point sampling consisted of 64 Sn atoms and 128 SnO₂ formula units, respectively. For bulk data with k-points, we used 8 Sn atoms and 2 SnO₂ formula units per unit cell of Sn and SnO₂ and $8 \times 8 \times 8$ k-points for the calculations, respectively. Surface properties of Sn and SnO₂ calculated with Γ -point involved a Sn (100) surface (repeated 4×2 along x×y direction) and SnO₂ (110) surface (repeated 2×2 along x×y direction). For surface data with k-points, we use the same surface unit cells and 4 × 4 × 1 k-points. For bulk properties calculated by VASP, we used a 8 atom Sn unit cell and a 2 formula unit cell SnO₂. Surface unit cells, repeated 1×1 along x×y direction, of Sn and SnO₂ were used to calculate all the surface properties. A energy cutoff of 700 eV (Sn) and 500 eV (SnO₂) and 5×5×5 Monkhorst-pack k-points was required to obtain converged properties in VASP.

Table 1: Surface lattice constants of slabs with and without oxygen defects

Surface	a / Å	b / Å	c / Å
Clean slab	13.61	6.46	40.00
$Clean \ slab + 1 \ def$	13.62	6.63	40.00
${\rm Clean}\;{\rm slab}+2\;{\rm def}$	13.57	6.69	40.00

2 Relative binding energy on all dopant elements

Dopant	$\Delta G(\mathrm{H}^*)$	Overpotential (V)
Sn	0.69	-0.60
Ti	0.15	-0.06
V	-0.02	-0.11
Zr	0.49	-0.40
Co	0.99	-0.90
Pb	-0.48	-0.57
Zn	0.62	-0.52
Cd	0.17	-0.08
Nb	-0.42	-0.51
Sb	1.40	-1.30
Ta	0.84	-0.74

Table 2: Relative binding energy of H between $3\mathrm{H}/1\mathrm{CO2}$ and $4\mathrm{H}/1\mathrm{CO2}$ states for all the dopant elements

3 Role of solvation

We investigated the role of solvation using a different continuum solvation model, VASPSol, which is implemented in VASP. Single point energy calculations using PAW potential, PBE functional on optimized structures from CP2K were performed. The table below shows that the binding energy of the most relevant intermediates, the $3H/1CO_2$ and $4H/1CO_2$ states. The data below shows that solvation does not significantly affect the relative energetics of these two key intermediates.

Table 3: Relativ	ve energetics	calculated	with and	without	solvation
10010 0. 1001001	C CHCI SCUCD	carcaratea	with and	without	501 / 401011

Energy	without solvation / eV	with solvation / eV
Binding energy of CO_2 to clean slab + $3H + 1def$	0.33	0.41
Binding energy of CO_2 to clean slab + 4H + 1def	0.25	0.39
Relative stability between Fig 4.a and 4.b	0.09	0.08

4 Energetics

Table 4: Table of energies of SnO_2 surface with 0% defects and different concentration of adsorbates. (I) Energy of structures relaxed with k-point sampling, (II) Energy from a single energy calculation on a structure relaxed with no k-point sampling. x denotes geometries that did not converge with k-point sampling

Surface composition	E_{elec} (I) / eV	E_{elec} (II) / eV	ZPE	-TS
Clean slab	-30975.32			
+ 1H	-30992.59	-30992.51	0.30	-0.01
+ 2H	-31009.38	-31009.33	0.60	-0.02
$+ 1 \text{CO}_2$	-32003.14	-32003.09	0.41	-0.08
$+ 2 \mathrm{CO}_2$	-33031.05	-33030.88	0.84	-0.11
+ 1H $+$ 1CO ₂	-32019.79	-32019.74	0.77	-0.06
+ 2H $+$ 1CO ₂	-32037.72	-32037.54	1.04	-0.08
+ 1H $+$ 2CO ₂	-33048.30	-33048.20	1.14	-0.13
$+ 2H + 2CO_2$	-33065.29	-33065.23	1.44	-0.14
+ 3H	х	-31026.38	0.91	-0.03
+ 3H $+$ 1CO ₂	х	-32054.34	1.34	-0.08
+ 3H $+$ 2CO ₂	х	-33081.24	1.83	-0.14
+ 4H	-31043.18	-31043.14	1.23	-0.03
+ 4H $+$ 1CO ₂	х	-32070.54	1.69	-0.09
+ 4H $+$ 2CO ₂	х	-33097.86	2.16	-0.13
+ 5H	х	-31058.41	1.54	-0.04
+ 5H $+$ 1CO ₂	х	-32086.13	1.97	-0.09
+ 5H $+$ 2CO ₂	-33113.48	-33113.49	2.45	-0.14

Table 5: Table of energies of SnO_2 surface with 25% defects and different concentration of adsorbates. (I) Energy of structures relaxed with k-point sampling , (II) Energy from a single energy calculation on a structure relaxed with no k-point sampling.

Surface composition	E_{elec} (I) / eV	E_{elec} (II) / eV	ZPE	-TS
Clean slab + 1def	-30538.93	-30538.78		
$+ 1 \mathrm{H}$	-30556.21	-30556.07	0.29	-0.02
$+ 2 \mathrm{H}$	-30574.41	-30574.19	0.61	-0.02
$+ 1 \mathrm{CO}_2$	-31566.90	-31566.76	0.43	-0.05
$+ 2 \mathrm{CO}_2$	-32594.51	-32594.32	0.86	-0.11
+ 1H $+$ 1CO ₂	-31584.05	-31583.88	0.75	-0.06
+ 2H $+$ 1CO ₂	-31601.77	-31601.70	1.03	-0.08
+ 1H $+$ 2CO ₂	-32611.55	-32611.42	1.12	-0.16
$+ 2\mathrm{H} + 2\mathrm{CO}_2$	-32628.86	-32628.66	1.49	-0.13
+ 3H	-30590.92	-30590.85	0.91	-0.03
+ 3H $+$ 1CO ₂	-31618.39	-31618.31	1.32	-0.09
+ 3H $+$ 2CO ₂	-32645.74	-32645.66	1.78	-0.15
$+ 4 \mathrm{H}$	-30607.55	-30606.21	1.21	-0.04
+ 4H $+$ 1CO ₂	-31633.80	-31633.68	1.65	-0.09
+ 4H $+$ 2CO ₂	-32661.27	-32661.16	2.07	-0.13

Table 6: Table of energies of SnO_2 surface with 50% defects and different concentration of adsorbates. (I) Energy of structures relaxed with k-point sampling , (II) Energy from a single energy calculation on a structure relaxed with no k-point sampling. x denotes geometries that did not converge with k-point sampling

Surface composition	$\rm E_{elec}~(I)~/~eV$	$\rm E_{elec}~(II)~/~eV$	ZPE	-TS
Clean slab + 2def	-30102.37	-30102.22		
$+ 1 \mathrm{H}$	х	-30119.08	0.30	-0.01
$+ 2 \mathrm{H}$	х	-30135.63	0.61	-0.02
+ 1CO2	-31129.88	-31129.66	0.42	-0.06
+ 2 CO2	-32157.61	-32157.52	0.87	-0.10
+ 1H $+$ 1CO2	-31146.20	-31146.12	0.71	-0.08
+ 2H $+$ 1CO2	-31162.98	-31162.85	1.04	-0.07
+ 1H $+$ 2CO2	-32173.27	-32173.09	1.19	-0.11
+ 2H $+$ 2CO2	-32191.10	-32190.53	1.48	-0.13
+ 3H	-30152.50	-30150.86	0.92	-0.03
+ 3H $+$ 1CO2	х	-31178.60	1.33	-0.09
+ 3H $+$ 2CO2	х	-32206.70	1.77	-0.15