Supporting Information

Graphene-like δ -MnO₂ decorated with ultrafine CeO₂ as a highly-

efficient catalyst for long-life lithium-oxygen batteries

Can Cao,^a Jian Xie,^{*ab}Shichao Zhang,^c Bin Pan,^d Gaoshao Cao^b and Xinbing Zhao^{*ab}

- ^a State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- ^b Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, P. R. China
- ^c School of Materials Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, P. R. China

^d Industrial Technology Research Institute of Zhejiang University, Hangzhou 310058, P. R. China

^{*}E-mail: xiejian1977@zju.edu.cn;zhaoxb@zju.edu.cn

Fig. S1. Low-magnification SEM image and the corresponding EDS mapping of Mn and Ce elements in CeO_2/δ -MnO₂.

Fig. S2. SEM images of bare δ -MnO₂.

Fig. S3. TEM-EDS of the CeO_2/δ -MnO₂ catalyst.

Fig. S4. Voltage profiles of δ -MnO₂-catalyzed Li–O₂ cell at a limited capacity of 500 mAh g⁻¹ with

a rest time of 1 h after each charge and discharge step.

Fig. S5. Voltage profile of Li–CeO₂/ δ -MnO₂ cells charged to 4.3 and 4.4 V at a current density of 100 mA g⁻¹ in Ar.

Fig. S6. (a) Voltage profiles and (b) terminal voltages of δ -MnO₂-catalyzed Li–O₂ cell at a limited capacity of 500 mAh g⁻¹.

Fig. S7. Terminal voltages of CeO₂/δ-MnO₂-catalyzed Li–O₂ cells with a (a) low (Ce:Mn=5:95)

and (b) high (Ce:Mn=23:77) CeO₂/ δ -MnO₂ molar ratios at a limited capacity of 500 mAh g⁻¹.

Fig. S8. (a) Digital photo, (b) SEM image and (c) XRD patterns of the Li anode from the dead cell cycled at 100 mA g⁻¹ in the 1 M LiClO₄/TEGDME electrolyte.

Fig. S9. SEM images of the CeO_2/δ -MnO₂ electrode from the dead cell cycled at 100 mA g⁻¹ in the 1 M LiClO₄/TEGDME electrolyte.

Fig. S10. (a) Li 1s and (b) C 1s of the CeO₂/ δ -MnO₂ electrode from the dead cell cycled at 100 mA

 g^{-1} in the 1 M LiClO₄/TEGDME electrolyte.

Catalyst	Maximum capacity/current density	Capacity limited/current density	Cycle number	Reference
CeO ₂ /δ-MnO ₂	8260 mAh g ⁻¹ /100 mA g ⁻¹ (~0.05 mA cm ⁻²)	500 mAh g ⁻¹ /100mA g ⁻¹ (~0.05 mA cm ⁻²)	296	This work
CeO ₂ /CNT	${\sim}2000 \text{ mAh } g^{-1}\!/20 \text{ mA } g^{-1}$			[1]
CeO ₂ @N-RGO	11900 mAh $g^{-1}/400$ mA g^{-1}	$1000 \text{ mAhg}^{-1}/400 \text{mA g}^{-1}$	40	[2]
MnO _x @CeO ₂	2617 mAh $g^{-1}/100$ mA g^{-1}	$1000 \text{ mAh } \text{g}^{-1}/200 \text{mA } \text{g}^{-1}$	30	[3]
Ag@CeO ₂	3415 mAh $g^{-1}/100$ mA g^{-1}	500 mAh $g^{-1}/200$ mA g^{-1}	50	[4]
Zr-CeO ₂	8435 mAh $g^{-1}/0.1$ mA cm ⁻²	$1000 \text{ mAh } \text{g}^{-1}/1 \text{ mA } \text{cm}^{-2}$	40	[5]
G/Zr-CeO ₂	$3254 \text{ mAh g}^{-1}/0.2 \text{ mA cm}^{-2}$	$500 \text{ mAh g}^{-1}/1 \text{ mA cm}^{-2}$	14	[6]

Table S1 Comparison of electrochemical performance using CeO₂-based catalysts.

References

- C. Yang, R. A. Wong, M. Hong, K. Yamanaka, T. Ohta and H. R. Byon, *Nano Lett.*, 2016, 16, 2969–2974.
- Y. X. Jiang, J. F. Cheng, L. Zou, X. Y. Li, Y. P. Gong, B. Chi, J. Pu and J. Li, *Electrochim. Acta*, 2016, 210, 712–719.
- Y. Q. Zhu, S. H. Liu, C. Jin, S. Y. Bie, R. Z. Yang and J. Wu, J. Mater. Chem. A, 2015, 3, 13563–13567.
- Y. Liu, M. Wang, L. J. Cao, M. Y. Yang, S. Ho Sum Cheng, C. W. Cao, K. L. Leung, C. Y.
 Chung and Z. G. Lu, *J. Power Sources*, 2015, 286, 136–144.
- 5 R. S. Kalubarme, H. S. Jadhav, C. N. Park, K. N. Jung, K. H. Shin and C. J. Park, *J. Mater. Chem. A*, 2014, **2**, 13024–13032.
- 6 C. H. Ahn, R. S. Kalubarme, Y. H. Kim, K. N. Jung, K. H. Shin and C. J. Park, *Electrochim*. *Acta*, 2014, **117**, 18–25.