Supporting Information

Enable Effective Polysulfide Trapping and High Sulfur Loading via Pyrrole Modified Graphene Foam Host for Advanced Lithium-Sulfur Batteries

Kun Zhang^a, Keyu Xie^{a,*}, Kai Yuan^a, Wei Lu^b, ShitianHu^a, Wenfei Wei^a, Maohui Bai^c, Chao Shen^a

E-mail: kyxie@nwpu.edu.cn

^a State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU), Xi'an 710072, China.

^b University Research Facility in Materials Characterization and Device Fabrication, The Hong Kong Polytechnic University, Hong Kong, China.

^c School of Metallurgy and Environment, Central South University, Changsha 410083, China.

Figure S1. Photograph of Py-GF

Figure S2. TEM images of (a) Py-GF@S cathode and the corresponding element mappings of (b) C, (c) S,

(d) N.

Figure S3. SEM images of (a) Py-GF@S cathode at 10000 times magnification and the corresponding element mappings of (b) C, (c) S, (d) N.

Figure S4. SEM images of (a) Py-GF@S cathode at 1000 times magnification and the corresponding element mappings of (b) C, (c) S, (d) N.

Figure S5. SEM images of (a) Py-GF@S cathode at 500 times magnification and the corresponding element mappings of (b) C, (c) S, (d) N.

Figure S6. SEM images of (a) Py-GF@S cathode at 250 times magnification and the corresponding element mappings of (b) C, (c) S, (d) N.

Figure S7. Pore-size-distributions of (a) Py-GF and (b) Py-GF@S.

Figure S8. Nitrogen adsorption-desorption isotherms (a) and pore-size-distributions (b) of GF.

Figure S9. UV-Vis absorption spectra of pyrrole and Py-GF.

 Table S1. Comparison with sulfur-based multi-composites integrated sulfur with both carbon materials and

conductive polymers

Sample	Sulfur loading	Specific capacity	Capacity retention	Ref.
S-PPy/graphene multi- composite		~800 mA h g ⁻¹ at 0.1C	~600 mA h g ⁻¹ after 60 cycles (75% remained)	42
GA/S/PPy	4 mg cm ⁻¹	986 mA h g ⁻¹ at 0.5 C	687 mA h g ⁻¹ after 100 cycles(69.9% remained)	43
Polyaniline-coated sulfur/carbon composite	0.875mg cm ⁻¹	1405.5 m Ah g ⁻¹ at 1 C	596 m Ah g ⁻¹ after 100 cycles (42.4% remained)	44
pPAN-S/GNS	0.8 mg cm ⁻¹	1500 m Ah g ⁻¹ at 0.1 C	\sim 1200 m Ah g ⁻¹ after 100 cycles (80% remained)	45
Py-GF@S	6.2 mg cm ⁻²	985.8mAh g ⁻¹ at 0.5 C	797.9 mAh g^{-1} after 100 cycles (81.0% remained)	Our work

Table S2. Atomic percentage and weight percentage of element N and weight percentage of pyrrole in Py-GF and Py-GF S composites.

Sample	N At%	N Wt.%	Pyrrole Wt.%
Py-GF	5.42	6.26	29.96
Py-GF@S	2.35	1.09	5.22