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Figure S1 XRD pattern of the as-synthesized NiGa-LDH.
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Figure S2 SEM images of the NiGa-LDH (a, b) and NiGa2S4-N2 (c-f) at different magnifications.
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Figure S3 (a) SEM image of the NiGa2S4-N2, and elemental mapping of (b) Ni, (c) Ga and (d) S, 

respectively.



5

Figure S4 CV curves of (a) NiGa-LDH, (b) NiGa2S4-N1, and (c) NiGa2S4-N3 electrodes recorded 

at different scan rates. 
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Figure S5 GCD curves of (a) NiGa-LDH, (b) NiGa2S4-N1, (c) NiGa2S4-N2, and (c) NiGa2S4-N3 

electrodes measured at different current densities.
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Figure S6 Specific capacitances of NiGa-LDH, NiGa2S4-N1, NiGa2S4-N2, and NiGa2S4-N3 

electrodes measured at different scan rates.
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Figure S7 Columbic efficiency of NiGa2S4-N2 electrode during cycling test.
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Figure S8 SEM images of NiGa2S4-N2 electrode after cycling test.
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Figure S9 XRD pattern of NiGa2S4-N2 electrode after cycling test.
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Figure S10 Comparison of Nyquist plots of electrodes of NiGa-LDH, NiGa2S4-N1, NiGa2S4-N2, 

and NiGa2S4-N3 electrodes. The inset shows the enlarged EIS in the high frequency region.
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Figure S11 (a) XPS spectra of the as-prepared N,S-G/Fe2O3. XPS survey scan of (b) N 2p, (c) S 2p, 

(d) Fe 2p, and (e) O 1s for N,S-G/Fe2O3.

The high-resolution N 1s spectrum of N,S-G can be deconvoluted into four peaks at binding energies 

of around 398.5, 400.3, 401.3, and 402.2 eV (Figure S11b), corresponding to pyridinic N, pyrrolic 

N, graphitic N, and N oxides of pyridinic N, respectively.1, 2 The complex S 2p spectrum can be 

resolved into three separate peaks (Figure S11c). The first two peaks can be assigned to 2p3/2 and 

2p1/2 positions at binding energies of around 163.5 and 165.1 eV, respectively. Moreover, the peak 

at 168.5 eV is attributed to sulfate species formed by oxidation of sulfur in air.3, 4 The Fe 2p spectrum 

(Figure S11d) presents two peaks with binding energies of 711.7 and 725.2 eV, which correspond 

to the Fe 2p3/2 and Fe 2p1/2 spin–orbit interaction of Fe2O3, respectively, indicating the existence of 

Fe3+. Additionally, the satellite peak of the Fe 2p3/2 line centered at 719.3 eV is detected, further 

revealing the presence of Fe3+ species.5, 6 The O 1s spectrum (Figure S11e) is deconvolved into three 

bands at 529.7, 531.2, and 532.9 eV, corresponding to metal–oxygen bonds, C–O bonds, and C=O 

bond structures, respectively. 
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Figure S12 XRD pattern of the as-prepared N,S-G/Fe2O3 particles.
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Figure S13 (a) SEM image and (b) TEM image of N,S-G/Fe2O3.
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Figure S14 Raman spectra of the as-prepared RGO and N,S-G/Fe2O3.
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Figure S15 Electrochemical performance of N,S-G/Fe2O3: (a) CV curves collected in 6 M KOH as 

a function of scan rate, (b) GCD profiles obtained at different current densities, (c) the first eight 

cycles at a current density of 8 A g−1, (d) specific capacitance calculated as a function of current 

density, (e) cycling stability tested at 5 A g−1 for 4000 cycles, (f) Nyquist plots obtained in a 

frequency range of 10−2 to 105 Hz at the open-circuit potential before and after the cycling test (inset: 

fitted equivalent circuit).

All of the N,S-G/Fe2O3 CV curves show a quasi-rectangular shape (Figure S15a), indicating that the 

capacitance originates mainly from double-layer capacitance and pseudocapacitive behavior at the 

electrode interface.7, 8 Figure S15b exhibits a typical symmetrical triangular curve, indicating the 

excellent reversibility of the as-prepared N,S-G/Fe2O3.8 The GCD curve of the first eight cycles 

(Figure S15c) clearly indicates good electrochemical reversibility with around 99% Columbic 

efficiency. The specific capacitances of the N,S-G/Fe2O3 electrode (Figure S15d) calculated from 

the GCD profiles are 157, 132, 118, 109, 94, 88, and 86 F g–1 at current densities of 1, 2, 3, 4, 5, 8, 

and 10 A g–1, respectively. After 4000 cycles, the about 90.3% of the initial capacitance is retained 

even at a current density of 5 A g−1 (Figure S15e). The Nyquist plots of the N,S-G/Fe2O3 electrode 

show no obvious change after the cycling test (Figure S15f), implying noteworthy stability of the 

electrode.
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Table S1 Electrochemical performances comparison of the yolk-shelled NiGa2S4 structure 

with previously reported transition metal sulfides.

Materials Specific 

capacitance

Current destiny/scan 

rate

Ref.

Co9S8 nanorod 783.3 F g−1 5 mV s−1 S9

Co9S8 nanofilm 1645 F g−1 3 A g−1 S10

Co9S8 nanotube 390 F g−1 5 mV s−1 S11

CoS2 nanoparticle/graphene 253 F g−1 5 mV s−1 S12

Ni2S hollow sphere 547.2 F g−1 0.6 A g−1 S13

NiS hollow microsphere 1636.4 F g−1 1 A g−1 S14

NiS/CoO nanosheet hybrid 1054 F g−1 6 A g−1 S15

NiCo2S4 hollow sphere 1753.2 F g−1 1 A g−1 S16

NiCo2S4 nanosheet 744 F g−1 1 A g−1 S17

NiCo2S4 nanotube 1093 F g−1 0.2 A g−1 S18

NiCo2S4 nanotube@MnO2 

nanoplate

1337.8 F g−1 2 A g−1 S19

Ni3S2@CoS core–shell nano-

triangular pyramid arrays

376.06 F g−1 4 mA cm−2 S20

NiCo2S4@Co(OH)2 core-shell 

nanotube arrays

1054.95 F g−1 2 mA cm−2 S21

α-MnS nanoparticle/N doping-

rGO

933.6 F g−1 1 A g−1 S22

γ-MnS particle/rGO 846.4 F g−1 5 mV s−1 S23

yolk-shelled NiGa2S4 1798 F g−1 2 A g−1 Present work
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Table S2 Comparison of electrochemical performance of the reported asymmetric 
supercapacitor devices and the assembled NiGa2S4//N,S-G/Fe2O3.

Asymmetric 
supercapacitor 

devices

Energy 
density 

(Wh 
kg−1)

Power 
density 

(W kg−1)

Current 
density (A 
g−1 or mA 

cm−2)

Specific 
capacitanc

e
(A g−1)

Mass ratio of 
positive/neg

ative

Ref.

CoNi2S4//AC 33.9 
(27.2)

409 
(2458)

10 (60) mA 
cm−2

/ / S24

NiS–rGO//AC 18.7 
(11.6)

124 
(2900)

0.2 (4) A g−1 79.7 (49.5) / S25

Ni3S2/MWCNTs//AC 31.4 
(26.3)

200 
(4000)

1 (16) A g−1 55.8 (35) 0.21 S26

Co9S8//AC 31.4 200 0.25 A g−1 82.9 / S27

NiCo2S4@Ni3V2O8// 
AC

42.7 200 0.5 A g−1 93.75 0.51 S28

NiCo2S4@Co(OH)2//
AC

35.89 400 0.5 A g−1 100.94 0.40 S29

(Ni 
Co)0.85Se//graphene

~ 24.3 ~1094 8 mA 
cm−2

~ 54 / S30

NiGa2S4//N,S-
G/Fe2O3

43.6 
(22.2)

961 
(15,974)

1.5 (24) A 
g−1

123(63) 0.14 Present 

work
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