Electronic Supplementary Information

High-performance LiTi₂(PO₄)₃ anode for high-areal-capacity flexible aqueous lithium-ion batteries

Guo-Ming Weng, Long-Yin Simon Tam and Yi-Chun Lu*

Electrochemical Energy and Interfaces Laboratory, Department of Mechanical and Automation

Engineering, The Chinese University of Hong Kong, Shatin, N. T. 999077, Hong Kong SAR,

China

*E-mail: yichunlu@mae.cuhk.edu.hk

Figure S1. Crystal structure and reaction scheme of LiMn₂O₄ and LiTi₂(PO₄)₃.

Figure S2. XRD spectra of ccLTPs obtained at specified calcination temperatures.

Figure S3. SEM images of ccLTPs obtained at specified calcination temperatures. The scale bars are the same at 1 μ m. The agglomeration observed in the samples of 450 °C and 500 °C could be caused by the remaining sticky macromolecular aromatic ring compounds ¹ owing to incomplete decomposition of the pitch. The thermal decomposition of pitch can be completed at temperatures higher than 550 °C (Fig. S4), in which case the agglomeration was greatly alleviated.

Figure S4. TGA spectrum of the pitch in pure N_2 atmosphere. The decomposition of pitch occurs between 350 - 500 °C.

Figure S5. TGA spectra of N-ccLTP and ccLTP (prepared at 700 °C) in air. We note that the initial weight loss of ccLTP (c.a. 0.9%) and N-ccLTP (c.a. 1.2%) at temperatures between 50 to 100 °C are related to evaporation of water². A slightly higher water content (Δ =0.3%) for N-ccLTP was observed compared to the ccLTP, which is attributed to the improvement of the surface hydrophilicity of the carbon layer by nitrogen doping^{3, 4} leading to slightly more water absorbed onto the surface of N-ccLTP.

Figure S6. SEM images of (a) ccLTP and (b) N-ccLTP obtained at 700 °C. The scale bars are the same, i.e. 1 µm. (c) TEM image of ccLTP obtained at 700 °C. The scale bar is 5 nm.

Figure S7. Electrochemical performance of the full cells using pure carbon and/or N-doped carbon as anodes and LMO as the cathode at the 138 mA per gram of anode materials (pure carbon or N-C). The carbon materials were prepared following the same procedure of preparing ccLTP and N-ccLTP at 700 °C without adding the LTP precursor.

Systems (+ve/-ve)	Ref	Electrolyte	C-rate performance**	Cycle performance
LiFePO ₄ /LiTi ₂ (PO ₄) ₃	5	1 M Li ₂ SO ₄ (pH=13)	55 mAh g ⁻¹ @ 1 C *	90% retention after 1000 cycles @ 1 C
$LiMn_2O_4/Mo_6S_8$	6	21 m LiTFSI	40 mAh g ⁻¹ @ 0.15 C * 30 mAh g ⁻¹ @ 4.5 C *	72% retention after 1000 cycles @ 4.5 C
LiNi _{0.5} Mn _{1.5} O ₄ /Mo ₆ S ₈	7	21 m LiTFSI	30 mAh g ⁻¹ @ 0.5 C * 17 mAh g ⁻¹ @ 5 C *	70% retention after 400 cycles @ 5 C
LiCoO ₂ /Mo ₆ S ₈	8	21 m LiTFSI (0.1 wt% TMSB)	60 mAh g ⁻¹ @ 0.5 C * 38 mAh g ⁻¹ @ 2.5 C *	87% retention after 1000 cycles @ 2.5 C
LiNi _{0.5} Mn _{1.5} O ₄ / Li ₄ Ti ₅ O ₁₂	9	Li(TFSI) _{0.7} (BETI) _{0.3}	25 mAh g ⁻¹ @ 6.8 C *	63% retention after 100 cycles @ 6.8 C
LiMn ₂ O ₄ /TiO ₂	10	LiCl- Li ₂ SO ₄	90 mAh g ⁻¹ @ 2 C 120 mAh g ⁻¹ @ 5 C (capacity based on the cathode)	NA
LiFePO ₄ /LiFePO ₄	11	Sat. LiNO ₃	116 mAh g ⁻¹ @ 2 C 50 mAh g ⁻¹ @ 8.5 C	80% retention after 500 cycles @ 1.1 C
LiFePO ₄ /graphite	12	LiSICON	138 mAh g ⁻¹ @ 0.5 C 80 mAh g ⁻¹ @ 5 C	95.8% retention after 24 cycles @ 0.3 C (50 mA g ⁻¹)
LiMn ₂ O ₄ /LiTi ₂ (PO ₄) ₃	13	2 M Li ₂ SO ₄	112 mAh g ⁻¹ @ 0.1 C 40 mAh g ⁻¹ @ 20 C	90% retention after 300 cycles @ 0.22 C (30 mA g ⁻¹) 84% retention after 1300 cycles @ 1.08 C (150 mA g ⁻¹)
LiMn ₂ O ₄ /LiTi ₂ (PO ₄) ₃	14	1 M Li ₂ SO ₄	28 mAh g ⁻¹ @ 1.37 C * 8.3 mAh g ⁻¹ @ 68.5 C *	71% retention after 1000 cycles @ 1.4 C
LiMn ₂ O ₄ /LiTi ₂ (PO ₄) ₃	2	2 M Li ₂ SO ₄	105 mAh g ⁻¹ @ 1 C 89 mAh g ⁻¹ @ 10 C	80.6% retention after 120 cycles @ 1 C 97% retention after 120 cycles @ 10 C
LiMn ₂ O ₄ /LiTi ₂ (PO ₄) ₃	15	2 M Li ₂ SO ₄	123 mAh g ⁻¹ @ 1 C 103 mAh g ⁻¹ @ 10 C	91.2% retention after 100 cycles @ 0.22 C (30 mA g ⁻¹) 90.4% retention after 400 cycles @ 1.08 C (150 mA g ⁻¹)
LiMn ₂ O ₄ /LiTi ₂ (PO ₄) ₃ (This work)		2 M Li ₂ SO ₄	126 mAh g ⁻¹ @ 1 C 107 mAh g ⁻¹ @ 10 C 64 mAh g ⁻¹ @ 20 C	91.7% retention after 100 cycles @ 1 C (138 mA g ⁻¹) 75% retention after 1000 cycles @ 5 C (690 mA g ⁻¹) 67% retention after 1000 cycles @ 10 C (1380 mA g ⁻¹) 58% retention after 2000 cycles @ 10 C (1380 mA g ⁻¹)

Table S1. Summary of the state-of-the-art aqueous lithium-ion batteries.

Notes: * Capacity calculation is based on total mass of active electrode materials.

**For those not specified, the capacity is based on the mass of the anode active material.

Test item	Quality index	Experimental result	Method	
Softening point, °C	≥ 55	65	GB/T4507	
Ductility, cm	≥ 30	36	GB/T4508	
Penetration, 1/10 mm	60-80	68	GB/4509	
Penetration index (PI)	≥-0.4	-0.1	-	
Viscosity, Pa S	≤ 3	1.6	Viscosimeter	
Flash point, °C	≥ 230	270	GB/T267	
Solubility, %	≥99	99.5	GB/T11148	
Separation, difference of softening point (163 °C, 48 h), °C	≤ 2.5	1.5	T0660-98	
Elastic recovery (25 °C), %	≥65	78	T0661-98	
After forming membrane: Mass change, %	≤± 1.0	0.1	GB/T5304	
After forming membrane: Penetration ratio, %	≥60	70	GB/T4509	
After forming membrane: Ductility (5 °C, 5 cm/min), cm	≥20	25	GB/T4508	

Table S2. Characteristics of the pitch (SBS-modified pitch). Data is supplied by Maoming Lu Sun Asphalt Co. Ltd, Guangdong, China. Identification number: 201605030009.

System (+ve/-ve)	Electrolyte	Loading (mg cm ⁻²)	Areal capacity (mAh cm ⁻²)	Energy density (mWh cm ⁻³)	Ref
Nonaqueous LiCoO ₂ /Li metal	LiPON	NA	0.05-0.1	2.2	16
Aqueous MnO ₂ /PEDOT:PSS	0.5 M Na ₂ SO ₄	8.5	0.46	1.8	17
Nonaqueous LiMn ₂ O ₄ /Li ₄ Ti ₅ O ₁₂	LiTFSI-PEO	NA	NA	17.7	18
Nonaqueous LiMn ₂ O ₄ /Li ₄ Ti ₅ O ₁₂	LiPF ₆ in EC:DEC	1-2	0.29	-	19
Aqueous MnO ₂ /Ni	Na ₂ SO ₄ -PVA	NA	0.53	0.78	20
Solid-state Reduced GO	Graphite oxide	NA	NA	0.43**	21
VO _x /VN	LiCl-PVA	0.71	NA	0.61	22
ZnO-doped MnO ₂	LiCl-PVA	0.11	0.08	0.04	23
Aqueous Co ₉ S ₈ /Co ₃ O ₄	KOH-PVA	2	0.65	1.21-1.44	24
Carbon nanotubes	H ₃ PO ₄ -PVA	NA	NA	0.701	25
Aqueous LIB LiMn ₂ O ₄ /LiTi ₂ (PO ₄) ₃	2 M LiNO ₃	10-12	0.86-0.96	124	26
Aqueous LIB LiMn ₂ O ₄ /LiTi ₂ (PO ₄) ₃	2 M Li ₂ SO ₄	10-12	1.2-1.4	26-31	This work*

Table S3. Comparison of different state-of-the-art flexible power sources.

Notes: * The thickness of each component of the full cell was measured by caliper. The thickness of the cathode, anode and separator is determined to be 0.16 mm, 0.15 mm and 0.15 mm, respectively. The geometric active area of the cathode, anode and separator is 1 cm², 1 cm² and 2.25 cm², respectively. The energy is calculated by integrating the voltage vs. capacity plot.

** This value is obtained from the ref. 26.

Supplementary references

- 1. C. Xu, X. Cheng, L. Wang, J. Zhao, J. Wang and C. Song, The kinetics research on coal tar pitch and its extraction, 4th International Conference on Sensors, Measurement and Intelligent Materials (ICSMIM 2015), 2016, Shenzhen, China, 1004-1011.
- 2. Z. Liu, X. Qin, H. Xu and G. Chen, J. Power Sources, 2015, 293, 562-569.
- 3. Y. Xue, J. Liu, H. Chen, R. Wang, D. Li, J. Qu and L. Dai, *Angew. Chem. Int. Ed.*, 2012, **51**, 12124-12127.
- 4. Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang and Y. Lin, *J Power Sources*, 2010, **195**, 4375-4379.
- 5. J.-Y. Luo, W.-J. Cui, P. He and Y.-Y. Xia, *Nat. Chem.*, 2010, **2**, 760-765.
- 6. L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang and K. Xu, *Science*, 2015, **350**, 938-943.
- 7. F. Wang, L. Suo, Y. Liang, C. Yang, F. Han, T. Gao, W. Sun and C. Wang, *Adv. Energy Mater.*, 2016, 1600922.
- 8. F. Wang, Y. Lin, L. Suo, X. Fan, T. Gao, C. Yang, F. Han, Y. Qi, K. Xu and C. Wang, *Energy Environ. Sci.*, 2016, **9**, 3666-3673.
- 9. Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama and A. Yamada, *Nat. Energy*, 2016, **1**, 16129.
- 10. S. Liu, S. Ye, C. Li, G. Pan and X. Gao, J. Electrochem. Soc., 2011, 158, A1490-A1497.
- 11. D. Gordon, M. Y. Wu, A. Ramanujapuram, J. Benson, J. T. Lee, A. Magasinski, N. Nitta, C. Huang and G. Yushin, *Adv. Energy Mater.*, 2016, **6**, 1501805.
- 12. Z. Chang, C. Li, Y. Wang, B. Chen, L. Fu, Y. Zhu, L. Zhang, Y. Wu and W. Huang, *Sci. Rep.*, 2016, **6**, 28421.
- 13. D. Sun, Y. Jiang, H. Wang, Y. Yao, G. Xu, K. He, S. Liu, Y. Tang, Y. Liu and X. Huang, *Sci. Rep.*, 2015, **5**, 10733.
- 14. J. Sun, Y. Sun, L. Gai, H. Jiang and Y. Tian, *Electrochim. Acta*, 2016, 200, 66-74.
- 15. D. Sun, X. Xue, Y. Tang, Y. Jing, B. Huang, Y. Ren, Y. Yao, H. Wang and G. Cao, *ACS Appl. Mater. Interfaces*, 2015, **7**, 28337-28345.
- 16. M. Koo, K.-I. Park, S. H. Lee, M. Suh, D. Y. Jeon, J. W. Choi, K. Kang and K. J. Lee, *Nano Lett.*, 2012, **12**, 4810-4816.
- 17. Z. Su, C. Yang, C. Xu, H. Wu, Z. Zhang, T. Liu, C. Zhang, Q. Yang, B. Li and F. Kang, *J. Mater. Chem. A*, 2013, **1**, 12432-12440.
- 18. J. Ren, Y. Zhang, W. Bai, X. Chen, Z. Zhang, X. Fang, W. Weng, Y. Wang and H. Peng, *Angew. Chem.*, 2014, **126**, 7998-8003.
- 19. H. Xia, Q. Xia, B. Lin, J. Zhu, J. K. Seo and Y. S. Meng, *Nano Energy*, 2016, **22**, 475-482.
- 20. L. Zhang, P. Zhu, F. Zhou, W. Zeng, H. Su, G. Li, J. Gao, R. Sun and C.-p. Wong, *ACS Nano*, 2015, **10**, 1273-1282.
- 21. W. Gao, N. Singh, L. Song, Z. Liu, A. L. M. Reddy, L. Ci, R. Vajtai, Q. Zhang, B. Wei and P. M. Ajayan, *Nat. Nanotech.*, 2011, **6**, 496-500.
- 22. X. Lu, M. Yu, T. Zhai, G. Wang, S. Xie, T. Liu, C. Liang, Y. Tong and Y. Li, *Nano Lett.*, 2013, **13**, 2628-2633.
- 23. P. Yang, X. Xiao, Y. Li, Y. Ding, P. Qiang, X. Tan, W. Mai, Z. Lin, W. Wu and T. Li, *ACS Nano*, 2013, **7**, 2617-2626.
- 24. J. Xu, Q. Wang, X. Wang, Q. Xiang, B. Liang, D. Chen and G. Shen, *ACS Nano*, 2013, 7, 5453-5462.

- S. He, J. Cao, S. Xie, J. Deng, Q. Gao, L. Qiu, J. Zhang, L. Wang, Y. Hu and H. Peng, J. 25. Mater. Chem. A, 2016, 4, 10124-10129.
 X. Dong, L. Chen, X. Su, Y. Wang and Y. Xia, Angew. Chem. Int. Ed., 2016, 55, 1-5.
- 26.