Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Journal of Materials Chemistry A

SUPPLEMENTARY INFORMATION

Incorporation of Pd catalyst at fuel electrode of thin-film-based solid oxide cell by multi-layer deposition and its impact on low-temperature coelectrolysis

Cam-Anh Thieu,^{ab} Jongsup Hong,^a Hyoungchul Kim,^{ab} Kyung Joong Yoon,^{ab} Jong-Ho Lee,^{ab} Byung-Kook Kim ^a and Ji-Won Son ^{ab*}

^{*a.*} High-temperature Energy Materials Research Center, Korea Institute of Science and Technology (KIST), 14-5 Hwarang-ro, Seongbuk-gu, Seoul 136-791, Republic of Korea.

^b Nanomaterials Science and Engineering, Korea University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon 305-333, Korea.

* Corresponding authors: J.-W. Son (jwson@kist.re.kr)

Keywords: low-temperature co-electrolysis, Pd incorporation, fuel electrode functional layer, thin filmbased solid oxide cell

Fig. S1. Schematic of Co-EC testing system.⁴⁰ (Reprinted by permission from *J. Power Sources*, **280**, 630. Copyright (2015) Elsevier).

Fig. S2. I-V-P curves at 600 °C in fuel cell mode of TF-SOCs with C3 and C4 FEFL configurations

Fig. S3. (a) A SAED pattern and (b) HR-TEM image showing the lattice images of the Pd-Ni alloy

Fig. S4. Nyquist plots of 2 cells measured during LT-Co-EC testing at OCV at (a) 600 °C, (b) 550 °C and (c) 500 °C

Fig. S5. Morphology of (a) Pd-cell and (b) Ref-cell in fuel electrode functional layer (FEFL).⁴⁹ (Fig. S5. (b) is reproduced from permission of *Electrochem. Solid-State Lett*, **14**, B26. Copyright (2010) The Electrochemical Society.)