Supporting Information

Engineering hierarchical nanotree with CuCo₂O₄ trunk and NiO branches for high-performance supercapacitors

Kangwen Qiu^{*a,b*}, Min Lu^{*b*}, Yongsong Luo^{**b*}, Xiwen Du^{**a*}

^aInstitute of New-Energy Materials, School of Materials Science and Engineering, Tianjin Unviersity, Tianjin 300072, P.R. China. ^bSchool of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, P. R. China.

^{*} To whom correspondence should be addressed: E-mail: <u>xwdu@tju.edu.cn</u>, <u>ysluo@xynu.edu.cn</u>

Fig. S1 (a~b) SEM images of NiO films on Ni foam at different magnification.

Fig. S2 Nitrogen adsorption-desorption isotherms and pore-size distribution curves for (a) $CuCo_2O_4$ branches and (b) $CuCo_2O_4$ /NiO NTEs.

Fig. S3 (a, c) Cyclic voltammograms of $CuCo_2O_4$ NTUs and NiO branches obtained at different scan rates, respectively; and (b, d) charge/discharge curves of $CuCo_2O_4$ trunks and NiO braches electrodes at different current densities, respectively.

Fig. S4 Charge/discharge curves of the first 12 and last 12 cycles of the $CuCo_2O_4/NiO$ electrode at the current density of 20 A g⁻¹.

Fig. S5 Typical SEM of the CuCo₂O₄/NiO nanotrees after 10000 cycles.

Fig. S6 Electrochemical impedance spectra (EIS) of the $CuCo_2O_4$, NiO and $CuCo_2O_4$ /NiO electrodes measured after 10000th cycle at 20 A g⁻¹.

Fig. S7 (a) CV curves of activated carbon (AC) at various sweep rates and (b) galvanostatic charge/discharge voltage profiles at different current densities.

Fig. S8 Ragone plots of the $CuCo_2O_4/NiO//AC$ ASC.

Electrode structure	Specific capacitance	Reference
CuCo ₂ O ₄ /NiO nanotrees	2219 F g ⁻¹ at 1 A g ⁻¹	this study
CuCo ₂ O ₄ /NiO nanotrees	2043 F g ⁻¹ at 2 A g ⁻¹	this study
TiO2@MnO2 nanobelts	128 F g ⁻¹ at 1 A g ⁻¹	1
Co ₃ O ₄ @MnO ₂ nanoneedles	1693 F g ⁻¹ at 1 A g ⁻¹	2
Co ₃ O ₄ @Co(OH) ₂ nanowires	1095 F g-1 at 1 A g-1	3
Co ₃ O ₄ @NiO nanowires	853 F g ⁻¹ at 2 A g ⁻¹	4
Zn ₂ SnO ₄ @MnO ₂ nanocable	642 F g ⁻¹ at 1 A g ⁻¹	5
MnMoO ₄ @CoMoO ₄ nanowires	187 F g ⁻¹ at 1 A g ⁻¹	6
ZnCo ₂ O ₄ @NiCo ₂ O ₄ nanowires	1476 F g ⁻¹ at 1 A g ⁻¹	7
Co ₃ O ₄ @MnO ₂ nanoconches	1693 F g ⁻¹ at 1 A g ⁻¹	8
ZnO@MnO2 nanowires	275 F g ⁻¹ at 2 A g ⁻¹	9
TiO ₂ /NiO nanorods	611 F g ⁻¹ at 2 A g ⁻¹	10

Table S1 Comparison of specific capacitances of CuCo₂O₄/NiO nanotrees with different nanostructured electrodes reported in literature.

References

- Y. S. Luo, D.Z. Kong, J.S. Luo, S. Chen, D.Y. Zhang, K.W. Qiu, X.Y. Qi, H. Zhang, C.M. Li, T. Yu, *RSC Advances*, 2013, **3**, 14413-14422.
- D. Z. Kong, J. S. Luo, Y. L. Wang, W. N. Ren, T. Yu, Y. S. Luo, Y. P. Yang, C. W. Cheng, *Adv. Func. Mater.*, 2014, 24, 3815-3826.
- 3. X. H. Xia, J. P. Tu, Y. Q. Zhang, J. Chen, X. L. Wang, C. D. Gu, C. Guan, J. S. Luo, H. J. Fan, *Chem. Mater.*, 2012, 24, 3793-3799.
- X. H. Xia, J. P. Tu, Y. Q. Zhang, X. L. Wang, C. D. Gu, X. B. Zhao, H. J. Fan, ACS Nano, 2012, 6, 5531-5538.
- 5. L. H. Bao, J.F. Zang, X.D. Li, Nano lett., 2011, 11, 1215-1220.
- 6. L. Q. Mai, F. Yang, Y. L. Zhao, X. Xu, L. Xu, Y. Z. Luo, Nat. Commun., 2011, 2, 381.
- 7. Y. P. Huang, Y. E. Miao, H. Y. Lu, T. X. Liu, Chem. Eur. J., 2015, 21, 10100-10108.
- K. W. Qiu, H. L. Yan, D. Y. Zhang, Y. Lu, J. B. Cheng, M. Lu, C. L. Wang, Y. H. Zhang, X. M. Liu, Y. S. Luo, *J. Solid State Electrochem.*, 2014, **19**, 391.

- M. P. Yu, H. T. Sun, X. Sun, F. Y. Lu, G. K. Wang, T. Hu, H. Qiu, J. Lian, *Int. J. Electrochem. Sci.*, 2013, 8, e29.
- 10. J. B. Wu, R. Q. Guo, X. H. Huang, Y. Lin, J. Power Sources, 2013, 243, 317-322.