## **Supplementary Information for**

## Reusable Co<sub>x</sub>Ni<sub>1-x</sub> dye adsorbents as supercapacitor electrode

## materials

Haiming Sun<sup>a</sup><sup>‡</sup>, Xijia Yang<sup>a</sup><sup>‡</sup>, Lishu Zhang<sup>b</sup>, Lijun Zhao<sup>\*a</sup> and Jianshe Lian<sup>\*a</sup>

<sup>a</sup> Key Lab of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Nanling Campus, Changchun, 130025, P. R. China. E-mail: lijunzhao@jlu.edu.cn; lianjs@jlu.edu.cn; Fax: +86-431-85095876; Tel: +86-431-85095878; +86-431-85095875

<sup>b</sup> Institute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, 270 Xueyuan Xi Road, Wenzhou, Zhejiang, 325027, PR China.

‡ These authors contributed equally to this work.



**Fig. S1** a) Adsorption isotherm and b) Pseudo-second-order adsorption kinetic for adsorption of CR by the as-synthesized  $Co_{0.2}Ni_{0.8}$  and  $Co_{0.1}Ni_{0.9}$  binary metallic alloys. (Initial dye concentration 100 mg L<sup>-1</sup>, pH is about 7.5, temperature 25 °C)



**Fig. S2** FE-SEM image and particles sizes distribution of as-synthesized  $Co_{0.2}Ni_{0.8}$  alloy without additional treatment. (The particle sizes are calculated by Nano Measurer 1.2).

Table S1 The weight percentage of each element calculated by EDS spectrum.

| Element | С     | 0     | S    | Со    | Ni    |
|---------|-------|-------|------|-------|-------|
| wt%     | 12.63 | 24.24 | 1.40 | 14.66 | 47.07 |



**Fig. S3** TG-DTA curves of the M/MO@C-600 composite recorded under air atmosphere (flow rate: 100 mL min<sup>-1</sup>) from room temperature to 700 °C with a temperature ramp 10 °C min<sup>-1</sup>.



Fig. S4 XPS spectra of a) S 2p and b) N 1s.

Table S2 The atomic percentage of each element calculated by XPS spectrum.

| Element | С     | 0     | N    | S    | Со   | Ni   |
|---------|-------|-------|------|------|------|------|
| at%     | 73.94 | 18.71 | 0.48 | 0.71 | 1.24 | 4.92 |



Fig. S5 FE-SEM images of M/MO@C composites with the M constituent of: a) Co, b)  $Co_{0.6}Ni_{0.4}$ , c)  $Co_{0.4}Ni_{0.6}$ , d)  $Co_{0.2}Ni_{0.8}$  (M/MO@C-600), e)  $Co_{0.1}Ni_{0.9}$  and f) Ni. (Calcination temperature: 600 °C)



Fig. S6 CV curves of M/MO@C composites with the M constituent of: a) Co, b)  $Co_{0.6}Ni_{0.4}$ , c)  $Co_{0.4}Ni_{0.6}$ , d)  $Co_{0.2}Ni_{0.8}$  (M/MO@C-600), e)  $Co_{0.1}Ni_{0.9}$  and f) Ni. (Calcination temperature: 600 °C)



Fig. S7 FE-SEM images of a) M-500, b) M-600, c) M-700; d) XRD profile of M-600.



Fig. S8 FE-SEM images of a) M/MO@C-500 and b) M/MO@C-700; TEM images of c) M/MO@C-500 and d) M/MO@C-700.



Fig. S9 CV curves of a) M-500, b) M-600, c) M-700, d) M/MO@C-500 and e) M/MO@C-700; f) Corresponding  $I_{rp}$ -v<sup>1/2</sup> plots.



Fig. S10 Galvanostatic charge/discharge curves of a) M-500, b) M-600, c) M-700, d) M/MO@C-500, e) M/MO@C-600 and f) M/MO@C-700.



Fig. S11 EIS spectra of the M/MO@C-600 and M-600 composites.



Fig. S12 Cycling performance of M/MO@C-600 composite in the three-electrode system at a current density of 5 A  $g^{-1}$ .



**Fig. S13** Time-dependence optical images of two serials connected M/MO@C-600//AC supercapacitors lighten up six parallel connected LED indicators.