Electronic Supplementary Information

One-step CVD synthesis of carbon framework wrapped Co₂P as

flexible electrocatalyst for efficient hydrogen evolution

Cui Ye,^{a,‡} Min Qiang Wang,^{b,‡} Guo Chen,^a Yang Hui Deng,^a Ling Jie Li,^c Hong Qun Luo,^{a,*} and Nian Bing Li^{a,*}

^a Key Laboratory of Eco–environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China

^b Institute for Clean Energy & Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China

^c School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, People's Republic of China

1. Experimental section

1.1. Chemicals and reagents

Nafion (5 wt %), dimethylformamide (DMF), and Pt/C (20 wt % Pt on Vulcan XC-72R) were purchased from Sigma-Aldrich Chemical Reagent Co., Ltd. Carbon cloth (CC) was obtained from Wuhan Instrument Surgical Instruments Business. Cobalt chloride hexahydrate (CoCl₂·6H₂O), potassium phosphate (K₃PO₄), and polyvinylpyrrolidone (PVP) were purchased from Sinopharm Chemical Reagent Co., Ltd. Sodium dodecyl benzene sulfonate (SDBS), isooctane (C₈H₁₈), and n-butyl alcohol (C₄H₁₀O) were purchased from Aladdin Industrial Co., Ltd. All chemicals are analytical reagent grade and were used as received. Ultrapure water (18.2 MΩ cm) was used throughout the whole work.

2.2. Instrumentation

The structures and morphologies of prepared nanohybrids were sequentially assessed using field-emission scanning electron microscopy (FESEM, JEOL-7800F, Japan Electron Optics Laboratory Co., Japan), energy-dispersive X-ray spectroscopy (EDX, INCA X-Max 250, Japan), and transmission electron microscope (TEM, JEM-2100, Japan). Powder X-ray diffraction (XRD, Shimadzu XRD-7000, Shimadzu, Japan) patterns were executed by the XRD-7000 with Cu Kα source radiation at a scanning rate of 2° min⁻¹ from 10° to 80°. Raman spectrum (Renishaw, UK) was recorded over the frequency range of 1000-3000 cm⁻¹ using a 532.8 nm laser with an Invia Refl under ambient conditions. The surface properties of resultant nanohybrids were analyzed with X-ray photoelectron spectroscopy (XPS, Thermo ESCALAB 250Xi, Thermoelectricity Instruments, USA), and the thermal decomposition was investigated through thermogravimetric analyser (TGA, TA Instruments, USA) at a heating rate of 5 °C min⁻¹ from 25 to 700 °C in air flow.

2.3. Construction of the Co₃(PO₄)₂ precursor

 $CoCl_2$ (6 mL, 0.45 mol L⁻¹) aqueous solution was added to the mixture of SDBS (1.5 g), C_8H_{18} (36 mL), and $C_4H_{10}O$ (12 mL) under ultrasound for 15 min at room temperature to

construct the micro-emulsion system. Next, the K_3PO_4 (6 mL, 0.3 mol L⁻¹) aqueous solution was further added in the above micro-emulsion system slowly for 2 min followed by ultrasound for 30 min at room temperature. After the deposition reaction finished, the mixture was washed several times *via* centrifugation at 8000 rpm for 5 min with ethanol and ultrapure water, and then dried under vacuum at 60 °C. The mixture was further annealed at 650 °C with a rising rate of 5 °C min⁻¹ and maintained for 3 h to remove the crystal water, eventually forming $Co_3(PO_4)_2$ as a precursor for further work.

2.4. Construction of Co₂P@C/CC via one-step CVD method

A piece of CC (2 cm × 1 cm) was preprocessed with concentrated HNO₃ and then sequentially rinsed by ethanol and ultrapure water for each 10 min, thus acquiring the clean CC. The weight of CC was recorded after drying at 60 °C for 5 h. The preprocessed CC was dipped in an ink with the mixture of 0.5 g of Co₃(PO₄)₂, 0.2 g of PVP, and 5 mL of DMF for 5 min, then withdrawn from the ink, followed by dried at 80 °C for 0.5 h. The obtained sample was put in a ceramic boat and heated to 750 °C in a tube furnace under Ar atmosphere. Then hydrogen gas (Ar: hydrogen=5:1) was introduced into the furnace for 10 min to reduce the Co₃(PO₄)₂ to Co₂P. Immediately, 350 sccm C₂H₄ was replenished for 30 min to conduct the favourable synthesis of Co₂P@C/CC. The resultant product was rapidly cooled down to room temperature under the flow of Ar atmosphere. For the preparation of Co₂P/CC without wrapped carbon framework, the same procedure was executed except pumping C₂H₄.

2.5. Electrochemical performance

The electrochemical tests were executed by a workstation (CHI660E, CHI Instruments Inc, Shanghai) in a three-electrode system coupled with Co₂P@C/CC as a working electrode, platinum foil as a counter electrode and saturated calomel electrode (SCE) as a reference electrode. The polarization curves were surveyed *via* the linear sweep voltammetry (LSV) at a scan rate of 2 mV s⁻¹, and the long-term durability was investigated using potentiostatic electrolysis at fixed potentials. The onset overpotentials were ascertained up to the initiate of linear region in Tafel plot. Pt/C ink was prepared by dissolving 5 mg of

Pt/C into 300 µL of ethanol containing 1 wt % Nafion. Then 66 µL of above ink was deposited on the surface of 1 cm² CC and the Pt/C/CC was air-dried at room temperature. The current density was calibrated corresponding to the geometric area of working electrode. The geometric area values of all the samples are all 1 cm². The value of current density is calculated *via* dividing the current by geometric area. The recorded potential was adjusted by this equation: E (RHE) = E (SCE) + (0.242+0.059 pH) V.

2. Results

Calculation for the percent content of Co_2P in the $Co_2P@C/CC$.

As depicted in Figure 2B, the TGA curve of the resultant product shows a weight loss of 96.06 % in the temperature range from 600 °C to 800 °C, which is ascribed to the decomposition of $Co_2P@C/CC$ to yield Co_3O_4 . So, the percent content of Co_2P in the $Co_2P@C/CC$ can be calculated as follows:

$$Content (Co_2P) \% = \frac{\frac{(1 - 96.06\%) \times \frac{3Mr(Co)}{Mr(Co_3O_4)}}{\frac{2Mr(Co)}{Mr(Co_2P)}} \times 100}{= 3.65,}$$
where Mr denotes the relative molecular mass

Fig. S1 SEM image of $Co_3(PO_4)_2/CC$.

Fig. S2 Crystal structure of CoP.

Fig. S3 The Raman spectrum of Co₂P@C.

Fig. S4 The exchange current density of $Co_2P@C/CC$ via applying extrapolation method to the Tafel plot.

Fig. S5 Nyquist plots of a) Co_2P/CC and b) $Co_2P@C/CC$ in 0.5 M H_2SO_4 with a fitted equivalent circuit (inset).

Fig. S6 Comparison of HER performance of $Co_2P@C/CC$ with that of representative dicobalt phosphide in acid electrolyte.

Fig. S7 SEM images of $Co_2P@C/CC$ at low (a) and high (b) magnification after electrochemical tests.

Fig. S8 (A-C) Polarization curves for $Co_2P@C/CC$ of three different samples, (D-F) the corresponding SEM images of the three samples.

Fig. S9 The images of H_2 evolution process for $Co_2P@C/CC$ at two fixed overpotentials of A) –100 and B) –150 mV, respectively.

Table S1. Comparison of HER performance of $Co_2P@C/CC$ with that of representative non-noble-metal catalysts in acid electrolyte.

catalyst	onset overpotential (mV)	Tafel slope (mV dec ⁻¹)	current density (j, mA cm ⁻²)	overpotential at corresponding <i>j</i> (mV)	exchange current density (mA cm ⁻²)	ref.
hierarchical Mo ₂ C nanotubes	-82	62	10 20	172 197	0.017	[1]
MoS ₂ microflake		63	10	174	0.019	[2]
CoSe ₂ NP/ carbon		42.1	10	137	0.0049	
fiber paper			100	181		[3]
МоР		50	10	117	0.05	[4]
Co ₂ P	-70	71	10	134		(5)
			20	167		[5]
CoP/Ti foil		50	10	75	0.14	[6]
CoP/CC	38	51	10	67	0.288	[7]
			100	204		
Mn _{0.05} Co _{0.95} Se ₂		36			0.068	[8]
MoO _x /MoS₂ nanowires	-100	50	22	-400	0.045	[9]
hierarchical flower-like MoS₂@MoP-800	29	76	10	108		[10]
Mo-based Ni- MOF (HC800)		98	10	192		[11]
MoC-Mo ₂ C-31.4	38	43	10	126	0.011	[12]
Co-NRCNTs	-50	69	10	260	0.01	[13]
CoP nanocrystals	40	54	10	122	0.13	[14]
MoP@PC	77	66	10	153	0.21	[15]
CoNi@NC		105	10	142		[16]
Co₂P/Ti		45	10	95		[17]
Co₂P@N, P- PCN/CNTs		45	10	126		[18]
Co ₂ P/C	-20	50	10	125		[19]
			20	140		
CoP ₂ /RGO		51	10	70		[20]
MoP/RGO		58	20	118	0.201	[21]
MoS ₂ /G-20	30	67.4	10	110	0.14	[22]
Co₂P@C/CC	42	40.8	10 100	103 179	0.29	This work

Supplementary references

- 1. F. X. Ma, H. B. Wu, B. Y. Xia, C. Y. Xu and X. W. Lou, *Angew. Chem. Int. Ed.*, 2015, **54**, 15395.
- 2. D. Kiriya, P. Lobaccaro, H. Y. Nyein, P. Taheri, M. Hettick, H. Shiraki, C. M. Sutter-Fella, P. Zhao, W. Gao, R. Maboudian, J. W. Ager and A. Javey, *Nano lett.*, 2016, **16**, 4047.
- 3. D. Kong, H. Wang, Z. Lu and Y. Cui, J. Am. Chem. Soc., 2014, **136**, 4897.
- 4. J. Kibsgaard and T. F. Jaramillo, Angew. Chem. Int. Ed., 2014, 53, 14433.
- 5. Z. Huang, Z. Chen, Z. Chen, C. Lv, M. G. Humphrey and C. Zhang, *Nano Energy*, 2014, **9**, 373.
- 6. L. L. Feng, G. Yu, Y. Wu, G. D. Li, H. Li, Y. Sun, T. Asefa, W. Chen and X. Zou, *J. Am. Chem. Soc.*, 2015, **137**, 14023.
- 7. J. Tian, Q. Liu, A. M. Asiri and X. Sun, J. Am. Chem. Soc., 2014, **136**, 7587.
- 8. Y. Liu, X. Hua, C. Xiao, T. Zhou, P. Huang, Z. Guo, B. Pan and Y. Xie, *J. Am. Chem. Soc.*, 2016, **138**, 5087.
- 9. D. R. Cummins, U. Martinez, A. Sherehiy, R. Kappera, A. Martinez-Garcia, R. K. Schulze, J. Jasinski, J. Zhang, R. K. Gupta, J. Lou, M. Chhowalla, G. Sumanasekera, A. D. Mohite, M. K. Sunkara and G. Gupta, *Nat. commun.*, 2016, DOI: 10.1038/ncomms11857.
- 10. A. Wu, C. Tian, H. Yan, Y. Jiao, Q. Yan, G. Yang and H. Fu, *Nanoscale*, 2016, **8**, 11052.
- 11. X. Xu, F. Nosheen and X. Wang, Chem. Mater., 2016, 28, 6313.
- 12. H. Lin, Z. Shi, S. He, X. Yu, S. Wang, Q. Gao and Y. Tang, *Chem. Sci.*, 2016, **7**, 3399.
- 13. X. Zou, X. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmekova and T. Asefa, *Angew. Chem. Int. Ed.*, 2014, **53**, 4372.
- 14. Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri and X. Sun, *Angew. Chem. Int. Ed.*, 2014, **53**, 6710.
- 15. J. Yang, F. Zhang, X. Wang, D. He, G. Wu, Q. Yang, X. Hong, Y. Wu and Y. Li, *Angew. Chem. Int. Ed.*, 2016, **55**, 12854.
- 16. J. Deng, P. Ren, D. Deng and X. Bao, Angew. Chem. Int. Ed., 2015, 54, 2100.
- 17. J. F. Callejas, C. G. Read, E. J. Popczun, J. M. McEnaney and R. E. Schaak, *Chem. Mater.*, 2015, **27**, 3769.
- 18. X. Z. Li, Y. Y. Fang, F. Li, M. Tian, X. F. Long, J. Jin, J. T. Ma, J. Mater. Chem. A, 2016, 4, 15501
- 19. A. Dutta, A. K. Samantara, S. K. Dutta, B. K. Jena, N. Pradhan, ACS Energy Lett., 2016, 1, 169.
- 20 J. Wang, W. Yang and J. Liu, *J. Mater. Chem. A*, 2016, **4**, 4686.
- 21. G. Zhang, G. Wang, Y. Liu, H. Liu, J. Qu and J. Li, *J. Am. Chem. Soc.*, 2016, DOI: 10.1021/jacs.6b08491.
- 22. L. Ma, Y. Hu, G. Zhu, R. Chen, T. Chen, H. Lu, Y. Wang, J. Liang, H. Liu, C. Yan, Z. Tie, Z. Jin and J. Liu, *Chem. Mater.*, 2016, **28**, 5733.