Supporting Information

Efficiency Improvement of Dye-sensitized Solar Cells by *In-situ* Fluorescence Resonance Energy Transfer

Yu-Jie Lin, Jyun-Wei Chen, Po-Tsung Hsiao, Yung-Liang Tung, Cheng-Chung Chang,* and Chih-Ming Chen*

Supporting Information

Efficiency Improvement of Dye-sensitized Solar Cells by *In-situ* Fluorescence Resonance Energy Transfer

Yu-Jie Lin, Jyun-Wei Chen, Po-Tsung Hsiao, Yung-Liang Tung, Cheng-Chung Chang,* and Chih-Ming Chen*

Table S1.Photovoltaic performance of DSSCs with the doping of H-NIM invarious doping ratios under one sun (AM 1.5G) illumination.

Doping concentration ratio of H-NIM	P _{max} (mW)	V _{OC} (V)	J _{SC} (mA/cm ²)	FF	η (%)
0 %	1.47	0.770	16.89	0.705	9.16
9 %	1.57	0.777	17.94	0.706	9.84
10 %	1.58	0.774	18.28	0.697	9.87
11 %	1.57	0.777	18.08	0.698	9.82
13 %	1.60	0.780	18.16	0.704	9.98
14 %	1.62	0.771	18.91	0.696	10.14
17 %	1.62	0.771	18.98	0.694	10.15
20 %	1.63	0.772	18.97	0.693	10.16
25 %	1.59	0.787	18.11	0.697	9.93
33 %	1.54	0.786	17.62	0.697	9.65
50 %	1.43	0.794	16.06	0.703	8.97
100 %	0.03	0.535	0.57	0.692	0.21

*All N719 concentrations are set at 0.4 mM in all mixing solutions except 100 % doping ratio of H-NIM.

Doping concentration ratio of H-NIM	P _{max} (μW)	V _{OC} (V)	J _{SC} (μA/cm ²)	FF	η (%)		
0 %	5.08	0.568	75.74	0.741	16.46		
9 %	5.75	0.580	82.53	0.751	18.63		
10 %	5.91	0.576	85.40	0.751	19.14		
11 %	5.87	0.572	85.47	0.750	19.02		
13 %	5.98	0.578	85.91	0.753	19.36		
14 %	6.04	0.565	88.90	0.751	19.57		
17 %	6.15	0.573	89.20	0.753	19.92		
20 %	6.09	0.568	89.21	0.750	19.71		
25 %	5.98	0.584	85.08	0.751	19.36		
33 %	5.73	0.578	83.17	0.745	18.55		
50 %	5.23	0.597	73.60	0.744	16.94		
100 %	Not available due to very low values						

Table S2.Photovoltaic performance of DSSCs with the doping of H-NIM invarious doping ratios under T5 fluorescent lamps of 600 lux illumination.

*All N719 concentrations are set at 0.4 mM in all mixing solutions except 100 % doping ratio of H-NIM.

Sensitizing	Energy relay	J _{SC}	V _{OC}	FF	η	Year
dye	dye	(mA/cm^2)	(mV)	FF	(%)	[Ref.]
TT1	_	6.88	562	0.65	2.55	2009
	13 mM PTCDI	8.78	553	0.66	3.21	[1]
TT1	_	8.32	582	0.72	3.49	2010
	22 mM DCM	10.61	590	0.72	4.51	[2]
SQ1	_	2.98	807	0.58	1.40	2009
(SSDSSC)	10 mM N877	3.87	786	0.59	1.80	[3]
SQ1	—	7.48	639	0.73	3.51	2010
	10 mM N877	7.98	638	0.72	3.67	[4]
TT1	_	6.79	593	0.73	2.94	
	22 mM DCM	8.53	599	0.72	3.68	2011
	20 mM RB	7.88	580	0.72	3.29	[5]
	DCM + RB	9.81	579	0.70	3.97	
TT1	—	6.00	623	0.67	2.51	2013 [6]
	180 mM BL302	9.70	640	0.62	3.80	
	180 mM BL315	10.80	640	0.60	4.14	
	—	18.34	717	0.72	9.49	
N719	5 mM DAPI	19.80	745	0.72	10.65	
	5 mM H33342	19.48	740	0.73	10.57	
N3	—	14.60	704	0.69	7.20	
	5 mM DAPI	15.77	722	0.70	7.95	
	5 mM H33342	16.20	719	0.69	8.10	2015
Ru505	—	11.95	691	0.69	5.70	[7]
	5 mM DAPI	13.20	700	0.70	6.50	
	5 mM H33342	13.45	697	0.67	6.32	
Z907	_	11.53	675	0.75	5.81	
	5 mM DAPI	12.45	683	0.75	6.35	
	5 mM H33342	12.55	678	0.73	6.22	

Table S3.Photovoltaic performance of DSSCs with various energy relay dyesmixed into electrolytes under one sun (AM 1.5G) illumination.

Scheme S1. Reagents and conditions: (i) 6-aminohexanoic acid, ethanol, reflux, 2 h, (ii) 1-methylpiperazine, ethanol, reflux, 12 h, (iii) HCl_(g), DMF/acetone.

Figure S1. Incident photon to current conversion efficiency (IPCE) spectra of DSSCs with the photoanodes being soaked in various mixing solutions of N719 and H-NIM. The doping concentration ratios of H-NIM in the mixing solutions range from 0 % to 33 % with the concentration of N719 being fixed at 0.4 mM for all mixing solutions.

Figure S2. Absorption spectra of the solutions containing the N719 and H-NIM molecules desorbed from the TiO_2 mesoporous films. The desorption process is performed by soaking the dye-loaded TiO_2 photoanodes in a 0.1 M NaOH solution for 3.5 h.

Figure S3. IPCE difference between the DSSC with the doping of H-NIM and that without the doping of H-NIM deduced from the data in Fig. 4.

Figure S4. Photocurrent-photovoltage (J-V) curves of DSSCs with the doping of H-NIM fluorophore in the N719-loaded TiO₂ mesoporous films under (a) one sun (AM1.5G) and (b) T5 fluorescent lamps of 600 lux illumination. The increase rates of photocurrent density (J_{SC}) and power conversion efficiency (PCE), calculated from the data in (a) and (b), are shown in (c) and (d), respectively. The dotted trend lines show that the increase rates of J_{SC} and PCE are enhanced with increasing the doping concentration of H-NIM from 0 % to 17 %, and the enhancement is more pronounced for the T5 fluorescent lamps of 600 lux illumination.

Figure S5. Logarithmic dependence of (a) chemical capacitance, C_{μ} , (b) transport resistance in the TiO₂ film, R_t , and (c) the transit time of carriers across the TiO₂ active layer, τ_d , with various bias potentials under dark condition.

References

- B. E. Hardin, E. T. Hoke, P. B. Armstrong, J.-H. Yum, P. Comte, T. Torres, J. M. J. Fréchet, M. K. Nazeeruddin, M. Grätzel and M. D. McGehee, *Nat. Photonics*, 2009, 3, 406-411.
- B. E. Hardin, J.-H. Yum, E. T. Hoke, Y. C. Jun, P. Péchy, T. Torres, M. L. Brongersma, M. K. Nazeeruddin, M. Grätzel and M. D. McGehee, *Nano Lett.*, 2010, 10, 3077-3083.
- 3. J.-H. Yum, B. E. Hardin, S.-J. Moon, E. Baranoff, F. Nüesch, M. D. McGehee, M. Grätzel and M. K. Nazeeruddin, *Angew. Chem. Int. Ed.*, 2009, **48**, 9277-9280.
- 4. J.-H. Yum, E. Baranoff, B. E. Hardin, E. T. Hoke, M. D. McGehee, F. Nüesch, M. Grätzel and M. K. Nazeeruddin, *Energy Environ. Sci.*, 2010, **3**, 434-437.
- J.-H. Yum, B. E. Hardin, E. T. Hoke, E. Baranoff, S. M. Zakeeruddin, M. K. Nazeeruddin, T. Torres, M. D. McGehee and M. Grätzel, *ChemPhysChem*, 2011, 12, 657-661.
- G. Y. Margulis, B. Lim, B. E. Hardin, E. L. Unger, J.-H. Yum, J. M. Feckl, D. Fattakhova-Rohlfing, T. Bein, M. Grätzel, A. Sellinger and M. D. McGehee, *Phys. Chem. Chem. Phys.*, 2013, 15, 11306-11312.
- 7. M. M. Rahman, M. J. Ko and J.-J. Lee, *Nanoscale*, 2015, 7, 3526-3531.