Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017 ## **Supporting Information** ## Cation Modulation Beneficial Electrocatalyst Derived from Bimetallic Metal-organic Frameworks for Overall Water Splitting Yang Wang,^{1,2} Wenting Wu,¹ Yuan Rao, ¹ Zhongtao Li,¹ Noritatsu Tsubaki,*,² Mingbo Wu*,¹ ¹State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao 266580, China ²Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan ^{*}E-mail: tsubaki@eng.u-toyama.ac.jp (N. Tsubaki). Tel/Fax: (+81)-76-445-6846. ^{*}E-mail:wumb@upc.edu.cn (M.B. Wu). Tel: (+86) 532-86983452. Fax: (+86) 532-86981787. $\textbf{Fig. S1} \ (a) XRD \ patterns \ of \ Ni-MOF \ and \ bimetallic \ NiZn-MOF. \ (b) \ Cubic \ crystalline \ structure \ of \ Ni_3ZnC_{0.7}.$ Fig. S2 (a) and (b) XRD patterns of catalysts prepared at different temperature (2 h and 6 h). Fig. S5 High-resolution deconvoluted Zn 2p (a) and N 1s (b) spectra of Ni₃ZnC_{0.7}-550. Fig. S6 SEM image of $Ni_3ZnC_{0.7}$ -550. Fig. S7 TEM images of $Ni_3ZnC_{0.7}$ -650. **Scan rate (mV S⁻¹) Fig. S8** The plots of Δj with different scan rates. The double layer capacitance (*C*dl) was estimated from the linear slope. The ECSA normalization electrocatalytic performance was calculated by setting the ECSA of Ni₃ZnC_{0.7}-650 as 1, so the ECSA of Ni₃ZnC_{0.7}-550 is 4.8. Before ECSA normalization, the needed potential to deliver 5 mA cm⁻² of current density for Ni₃ZnC_{0.7}-650 (-300 mV) is 5 times more negative than that for Ni₃ZnC_{0.7}-550 (-60 mV). This narrowing gap after ECSA normalization (required -153 mV to deliver 5 mA cm⁻² of current density for Ni₃ZnC_{0.7}-550) after ECSA normalization highlighs the role of ECSA in enhancing electrocatalytic performance. **Fig. S9** Polarization curves of $Ni_3ZnC_{0.7}$ -550 and $Ni_3ZnC_{0.7}$ -650 normalized by the electrochemical active surface area (ECSA). **Fig. S10** (a) SEM and (b) TEM images of $Ni_3ZnC_{0.7}$ -550 after long-term OER stability measurement. (c) XPS result of Ni 2p spectra of $Ni_3ZnC_{0.7}$ -550 after long-term OER stability measurement. (d) XRD patterns of $Ni_3ZnC_{0.7}$ -550 before and after long-term OER stability measurement. Fig. S11 Photography of the electrolyte after overall water splitting for 24 h. Table S1. Chemical and texture properties of NiZn-MOF and Ni $_3$ ZnC $_{0.7}$ -550 | Sample | S _{BET} | D | V | C (Atomic | N (Atomic | Ni (Atomic | Zn (Atomic | |---|------------------|------|-----------------|------------|------------|------------|------------| | | $(m^2 g^{-1})$ | (nm) | $(cm^3 g^{-1})$ | %) | %) | %) | %) | | NiZn-MOF | 1107 | 1.8 | 0.51 | - | - | - | - | | $Ni_3ZnC_{0.7}$ -550 | 140 | 7.1 | 0.26 | 70.5 | 3.9 | 7.8 | 2.5 | | Ni ₃ ZnC _{0.7} -650 | - | - | - | 57.2 | 6.8 | 15.9 | 5.1 | Table S2. Particle sizes of Ni₃ZnC_{0.7} calculated by Scherrer equation^a | Samples | Particle sizes (nm) | |---|---------------------| | Ni ₃ ZnC _{0.7} -550-2 | 10.5 | | $Ni_3ZnC_{0.7}$ -550-6 | 17.1 | | $Ni_3ZnC_{0.7}$ -650-2 | 16.5 | | $Ni_3ZnC_{0.7}$ -650-6 | 28.8 | | $Ni_3ZnC_{0.7}$ -750-2 | 17.6 | ^a The particle sizes are estimated from Ni₃ZnC_{0.7} (111) peaks using the Scherrer equation: $D = K\lambda / \beta cos\theta$, where λ is the wavelength of the X-ray ($\lambda = 0.154$ nm), K is the Scherrer constant and a value of 0.9 is adopted, β is the full width at the half maximum (FWHM) of 2θ peaks. **Table S3.** Comparison of the electrocatalytic activity of $Ni_3ZnC_{0.7}$ -550 to recently reported catalysts for HER in basic solution | TIER III basic soi | 411011 | | | | | |---|---|-------------|--|-------------------------------------|---| | Catalyst | Catalyst
loading (mg
cm ⁻²) | Electrolyte | η at j = 10
mA cm ⁻²
(mV) | Tafel slope (mV dec ⁻¹) | Reference | | $Ni_3ZnC_{0.7}$ -550 | ~0.24 | 1 M KOH | 93 | 48 | this work | | CoO _x @CN | 0.12 | 1 M KOH | 232 | 115 | J. Am. Chem. Soc.2015, 137, 2688 | | Co-NRCNTs | 0.28 | 1 M KOH | 370 | - | Angew. Chem., Int. Ed. 2014 , 53, 4372 | | Ni/CeO ₂ -CNT | 0.14 (based on
the mass of Ni) | 1 M KOH | 91 | - | Nano Lett. 2015 , 15, 7704 | | NiO/Ni-CNT | 0.28 | 1 M KOH | 80 | 82 | Nat. Commun. 2014 , 5, 4695 | | Co-P/NC | 0.28 | 1 M KOH | 191 | 51 | Chem.Mater. 2015 , 27, 7636 | | CP/CTs/Co-S | 0.32 | 1 M KOH | 190 | 131 | ACS Nano. 2016 , 10, 2342 | | CoP/rGO | 0.28 | 1 M KOH | 150 | 38 | Chem. Sci. 2016 , 7, 1690 | | Hierarchical NiCo ₂ O ₄ hollow microcuboids | 1 | 1 M NaOH | 110 | 49.7 | Angew. Chem., Int.
Ed. 2016 , 55, 1 | | Ni ₃ FeN | 0.35 | 1 М КОН | 158 | 42 | Adv. Energy
Mater. 2016 , 6,
1502585 | | Ni/NC | 0.20 | 1 M KOH | 219 | 101 | ACS Catal. 2016 , 6, 580 | **Table S4.** Comparison of the electrocatalytic activity of $Ni_3ZnC_{0.7}$ -550 to recently reported catalysts for OER in basic solution | Catalyst | Catalyst loading (mg cm ⁻²) | Electrolyte | η at j = 10
mA cm ⁻²
(mV) | Tafel slope (mV dec ⁻¹) | Reference | |---|---|-------------|--|-------------------------------------|---| | Ni ₃ ZnC _{0.7} -550 | ~0.24 | 1 M KOH | 320 | 52 | this work | | CoO _x @CN | 1 | 1 M KOH | 260 | - | J. Am. Chem. Soc. 2015 , 137, 2688 | | Zn _x Co _{3-x} O ₄ | 1 | 1 M KOH | 320 | 51 | <i>Chem. Mater.</i> 2014 , 26, 1889 | | Co-P/NC | 0.28 | 1 M KOH | 354 | 52 | Chem.Mater. 2015 , 27, 7636 | | Zn-Co-LDH | 0.28 | 0.1 M KOH | 520 | - | J. Am. Chem. Soc. 2013 , 135, 17242 | | CP/CTs/Co-S | 0.32 | 1 M KOH | 306 | 72 | ACS Nano. 2016 , 10, 2342 | | CoP/rGO | 0.28 | 1 M KOH | 340 | 66 | Chem. Sci. 2016 , 7, 1690 | | Hierarchical NiCo ₂ O ₄ hollow microcuboids | 1 | 1 M NaOH | 290 | 53 | Angew. Chem., Int. Ed. 2016 , 55, 1 | | Ni ₃ FeN | 0.35 | 1 M KOH | 280 | 46 | Adv. Energy
Mater. 2016 , 6,
1502585 | | $Ni_{0.9}Fe_{0.1}/NC$ | 0.20 | 1 M KOH | 330 | 45 | ACS Catal. 2016 , 6, 580 |