Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Cation Modulation Beneficial Electrocatalyst Derived from Bimetallic Metal-organic Frameworks for Overall Water Splitting

Yang Wang,^{1,2} Wenting Wu,¹ Yuan Rao, ¹ Zhongtao Li,¹ Noritatsu Tsubaki,*,² Mingbo Wu*,¹

¹State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of

Petroleum, Qingdao 266580, China

²Department of Applied Chemistry, Graduate School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan

^{*}E-mail: tsubaki@eng.u-toyama.ac.jp (N. Tsubaki). Tel/Fax: (+81)-76-445-6846.

^{*}E-mail:wumb@upc.edu.cn (M.B. Wu). Tel: (+86) 532-86983452. Fax: (+86) 532-86981787.

 $\textbf{Fig. S1} \ (a) XRD \ patterns \ of \ Ni-MOF \ and \ bimetallic \ NiZn-MOF. \ (b) \ Cubic \ crystalline \ structure \ of \ Ni_3ZnC_{0.7}.$

Fig. S2 (a) and (b) XRD patterns of catalysts prepared at different temperature (2 h and 6 h).

Fig. S5 High-resolution deconvoluted Zn 2p (a) and N 1s (b) spectra of Ni₃ZnC_{0.7}-550.

Fig. S6 SEM image of $Ni_3ZnC_{0.7}$ -550.

Fig. S7 TEM images of $Ni_3ZnC_{0.7}$ -650.

Scan rate (mV S⁻¹) Fig. S8 The plots of Δj with different scan rates. The double layer capacitance (*C*dl) was estimated from the linear slope.

The ECSA normalization electrocatalytic performance was calculated by setting the ECSA of Ni₃ZnC_{0.7}-650 as 1, so the ECSA of Ni₃ZnC_{0.7}-550 is 4.8. Before ECSA normalization, the needed potential to deliver 5 mA cm⁻² of current density for Ni₃ZnC_{0.7}-650 (-300 mV) is 5 times more negative than that for Ni₃ZnC_{0.7}-550 (-60 mV). This narrowing gap after ECSA normalization (required -153 mV to deliver 5 mA cm⁻² of current density for Ni₃ZnC_{0.7}-550) after ECSA normalization highlighs the role of ECSA in enhancing electrocatalytic performance.

Fig. S9 Polarization curves of $Ni_3ZnC_{0.7}$ -550 and $Ni_3ZnC_{0.7}$ -650 normalized by the electrochemical active surface area (ECSA).

Fig. S10 (a) SEM and (b) TEM images of $Ni_3ZnC_{0.7}$ -550 after long-term OER stability measurement. (c) XPS result of Ni 2p spectra of $Ni_3ZnC_{0.7}$ -550 after long-term OER stability measurement. (d) XRD patterns of $Ni_3ZnC_{0.7}$ -550 before and after long-term OER stability measurement.

Fig. S11 Photography of the electrolyte after overall water splitting for 24 h.

Table S1. Chemical and texture properties of NiZn-MOF and Ni $_3$ ZnC $_{0.7}$ -550

Sample	S _{BET}	D	V	C (Atomic	N (Atomic	Ni (Atomic	Zn (Atomic
	$(m^2 g^{-1})$	(nm)	$(cm^3 g^{-1})$	%)	%)	%)	%)
NiZn-MOF	1107	1.8	0.51	-	-	-	-
$Ni_3ZnC_{0.7}$ -550	140	7.1	0.26	70.5	3.9	7.8	2.5
Ni ₃ ZnC _{0.7} -650	-	-	-	57.2	6.8	15.9	5.1

Table S2. Particle sizes of Ni₃ZnC_{0.7} calculated by Scherrer equation^a

Samples	Particle sizes (nm)
Ni ₃ ZnC _{0.7} -550-2	10.5
$Ni_3ZnC_{0.7}$ -550-6	17.1
$Ni_3ZnC_{0.7}$ -650-2	16.5
$Ni_3ZnC_{0.7}$ -650-6	28.8
$Ni_3ZnC_{0.7}$ -750-2	17.6

^a The particle sizes are estimated from Ni₃ZnC_{0.7} (111) peaks using the Scherrer equation: $D = K\lambda / \beta cos\theta$, where λ is the wavelength of the X-ray ($\lambda = 0.154$ nm), K is the Scherrer constant and a value of 0.9 is adopted, β is the full width at the half maximum (FWHM) of 2θ peaks.

Table S3. Comparison of the electrocatalytic activity of $Ni_3ZnC_{0.7}$ -550 to recently reported catalysts for HER in basic solution

TIER III basic soi	411011				
Catalyst	Catalyst loading (mg cm ⁻²)	Electrolyte	η at j = 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Reference
$Ni_3ZnC_{0.7}$ -550	~0.24	1 M KOH	93	48	this work
CoO _x @CN	0.12	1 M KOH	232	115	J. Am. Chem. Soc.2015, 137, 2688
Co-NRCNTs	0.28	1 M KOH	370	-	Angew. Chem., Int. Ed. 2014 , 53, 4372
Ni/CeO ₂ -CNT	0.14 (based on the mass of Ni)	1 M KOH	91	-	Nano Lett. 2015 , 15, 7704
NiO/Ni-CNT	0.28	1 M KOH	80	82	Nat. Commun. 2014 , 5, 4695
Co-P/NC	0.28	1 M KOH	191	51	Chem.Mater. 2015 , 27, 7636
CP/CTs/Co-S	0.32	1 M KOH	190	131	ACS Nano. 2016 , 10, 2342
CoP/rGO	0.28	1 M KOH	150	38	Chem. Sci. 2016 , 7, 1690
Hierarchical NiCo ₂ O ₄ hollow microcuboids	1	1 M NaOH	110	49.7	Angew. Chem., Int. Ed. 2016 , 55, 1
Ni ₃ FeN	0.35	1 М КОН	158	42	Adv. Energy Mater. 2016 , 6, 1502585
Ni/NC	0.20	1 M KOH	219	101	ACS Catal. 2016 , 6, 580

Table S4. Comparison of the electrocatalytic activity of $Ni_3ZnC_{0.7}$ -550 to recently reported catalysts for OER in basic solution

Catalyst	Catalyst loading (mg cm ⁻²)	Electrolyte	η at j = 10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Reference
Ni ₃ ZnC _{0.7} -550	~0.24	1 M KOH	320	52	this work
CoO _x @CN	1	1 M KOH	260	-	J. Am. Chem. Soc. 2015 , 137, 2688
Zn _x Co _{3-x} O ₄	1	1 M KOH	320	51	<i>Chem. Mater.</i> 2014 , 26, 1889
Co-P/NC	0.28	1 M KOH	354	52	Chem.Mater. 2015 , 27, 7636
Zn-Co-LDH	0.28	0.1 M KOH	520	-	J. Am. Chem. Soc. 2013 , 135, 17242
CP/CTs/Co-S	0.32	1 M KOH	306	72	ACS Nano. 2016 , 10, 2342
CoP/rGO	0.28	1 M KOH	340	66	Chem. Sci. 2016 , 7, 1690
Hierarchical NiCo ₂ O ₄ hollow microcuboids	1	1 M NaOH	290	53	Angew. Chem., Int. Ed. 2016 , 55, 1
Ni ₃ FeN	0.35	1 M KOH	280	46	Adv. Energy Mater. 2016 , 6, 1502585
$Ni_{0.9}Fe_{0.1}/NC$	0.20	1 M KOH	330	45	ACS Catal. 2016 , 6, 580