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In Figures S1 and S2, 15N NMR spectra of 6 and 8 are given. The assignments are 

based on the literature values of resonance peaks in similar compounds[1,2] and 

compared with calculated spectra [B3LYP/6-311+g(2d,p) with IEF-PCM continuum 

solvation models of the Gaussian 03 program].[3,4]

Figure S1. 15N spectrum of 6 in DMSO-d6.

Figure S2. 15N spectrum of 8 in DMSO-d6.
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X-ray Crystallography of 8

An orange crystal of dimensions 0.431 x 0.190 x 0.040 mm3 was mounted on a MiteGen 

MicroMesh using a small amount of Cargille immersion oil.  Data were collected on a Bruker 

three-circle platform diffractometer equipped with a SMART APEX II CCD detector.  The 

crystals were irradiated using graphite monochromated MoK radiation (= 0.71073).  An 

Oxford Cobra low temperature device was used to maintain the crystals at a constant 150(2) K 

during data collection.

Data collection was performed and the unit cell was initially refined using 

APEX2 [v2014.3-0].[5] Data reduction was performed using SAINT [v7.68A][6] and 

XPREP [v2014/2].[7] Corrections were applied for Lorentz, polarization, and 

absorption effects using SADABS [v2008/1].[8] The structure was solved and refined 

with the aid of the programs SHELXL-2014/7 within WingX.[9] The full-matrix least-

squares refinement on F2 included atomic coordinates and anisotropic thermal 

parameters for all non-H atoms. The H atoms were included using a riding model 

(Table S1).

Table S1. Selected crystal parameters of 8

Empirical formula C7H8N16O10 

(8)

Formula weight 476.29

Temperature/K 150

Crystal system monoclinic

Space group P21/c

a/Å 12.337(2)

b/Å 11.4124(19)

c/Å 11.8204(19)

α/° 90

β/° 100.961(6)

γ/° 90
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Volume/Å3 1633.8(5)

Z 4

ρcalc/g cm-3 1.936

μ/mm-1 0.177

F(000) 968

CCDC number 1510982

Figures S3 to S6

Figure S3. Single-crystal X-ray structures of 8 with numbering. 



S5

Figure S4. Unit cell view for 8 along a axis, hydrogen bonds are marked as dotted 

lines.
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Figure S5. Unit cell view for 8 along b axis, hydrogen bonds are marked as dotted 

lines.

Figure S6. Unit cell view for 8 along c axis, hydrogen bonds are marked as dotted 

lines.
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Table S2. Hydrogen bonds for 8 [Å and °]
____________________________________________________________________         

D-H...A d(D-H) d(H...A) d(D...A) <(DHA)
_____________________________________________________________________
 N(31)-H(31A)...O(6)#2 0.88 2.20 2.922(2) 139.6
 N(31)-H(31B)...N(26)#1 0.88 2.22 3.032(2) 153.4
 N(29)-H(29B)...O(2)#1 0.88(2) 2.19(2) 2.996(2) 151.3(18)
 N(9)-H(9)...N(32)#3 0.88 2.16 2.909(2) 143.4
 N(9)-H(9)...O(6) 0.88 1.95 2.515(2) 120.2
 N(23)-H(23B)...O(21)#4 0.88 2.55 3.278(2) 140.7
 N(23)-H(23B)...O(2)#5 0.88 2.30 2.981(2) 133.7
 N(23)-H(23A)...N(10)#2 0.88 2.14 3.015(2) 174.3
 N(25)-H(25)...O(7)#5 0.88 2.01 2.764(2) 143.3
 N(25)-H(25)...O(2)#5 0.88 2.05 2.773(2) 138.7
____________________________________________________________________ 
Symmetry transformations used to generate equivalent atoms: 
#1 -x+2,y-1/2,-z+1/2    #2 x,-y+1/2,z+1/2    #3 x,-y+1/2,z-1/2 
#4 -x+1,-y+1,-z+1    #5 x,-y+3/2,z+1/2 

Theoretical calculations

As mentioned in the manuscript, the heats of formation for 5-(dinitromethyl)-3-

(trinitromethyl)-1H-1,2,4-triazole as well as its monoanion and dianion were 

determined using isodesmic reactions (Scheme S1). The calculations were carried out 

using Gaussian 03 (Revision D.01) suite of programs.[3] The geometric optimization 

and frequency analyses of the structures were calculated using B3LYP/6-31+G** 

level,[10] and single energy points were calculated at the MP2/6-311++G** level.[11] 

The heats of formation for the ammonium, the  hydrazinium, guanidinium, and 

triaminoguanidinium ions were obtained by an atomization approach using G2 ab 

initio method[12] (Table S3). The heat of formation for the 3,6,7-triamino-7H-

[1,2,4]triazolo[4,3-b][1,2,4]triazol-2-ium ion was obtained from the literature.[2] The 

heats of formation of other compounds in Scheme S2 were obtained from the NIST 

WebBook.[13]
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Scheme S1. Isodesmic reactions for calculating heats of formation for 5-

(dinitromethyl)-3-(trinitromethyl)-1H-1,2,4-triazole as well as its monoanion and 

dianion.

Table S3. Enthalpies of the gas-phase species. 

                    M ΔHf
º 

(kJ mol-1)

5-(dinitromethyl)-3-(trinitromethyl)-1H-1,2,4-triazole 122.1

5-(dinitromethylene)-3-(trinitromethyl)-1,5-dihydro-1,2,4-triazol-4-ide -146.4

5-(dinitromethylene)-3-(trinitromethyl)-1,2,4-triazole-1,4-diide -29.2

ammonium ion 626.4

hydrazinium ion 770.0

3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazol-2-ium 1090.6

guanidinium 575.9

triaminoguanidinium 883.6

The solid-state enthalpy of formation for a neutral compound can be estimated 

by subtracting the heat of sublimation from the gas-phase heat of formation. Based on   

the literature,[14] the heat of sublimation can be estimated with Trouton’s rule 

according to eq 1, where T represents either the melting point or the decomposition 

temperature when no melting occurs prior to decomposition:
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ΔHsun
º = 188/J mol-1K-1* Tm(d)                 (1)

For energetic salts, the solid-phase heat of formation is calculated on the basis of 

a Born-Haber energy cycle (Scheme S3).[15] The number is simplified by equation 2:

Scheme S3. Born−Haber Cycle for the formation of energetic salts.

ΔHf
º (salt, 298 K) = ΔHf

º (cation, 298K) + ΔHf
º (anion, 298K) – ΔHL        (2)

in which ΔHL can be predicted by using the formula suggested by Jenkins, et 

al.[15](equation 3):

ΔHL = Upot + [p(nM/2 – 2) + q(nX/2 – 2)]RT             (3)

In this equation, nM and nX depend on the nature of the ions Mp+ and Xq-, respectively. 

The equation for lattice potential energy Upot(equation 4) has the form:[15]

UPOT [kJ mol-1] = γ(ρm/Mm)1/3 + δ         (4)

where ρm [g cm−3] is the density of the salt, Mm is the chemical formula mass of the 

ionic material, and values for g and the coefficients γ (kJmol−1cm) and δ (kJmol−1) are 

assigned literature values.[15] By using the measured room temperature densities, all 

the new compounds are listed in Table S4.
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Table S4. Densities, calculated lattice energies, and calculated heats of formation of 6 

 12.

d[a]

[g cm-3]

∆fHLat
[b]

[kJ mol-1]
∆fH [c]

[kJ mol-1 /kJ g-1]

6 1.97 - 56.3/0.17

7 1.87 458.8 21.3/0.06

8 1.90 424.1 520.2/1.09

9 1.79 1224.1 286.7/0.70

10 1.65 1225.7 -2.1/-0.005

11 1.71 1146.0 -23.4/-0.05

12 1.73 1069.8 668.2/1.25

[a] Density - gas pycnometer at room temperature. [b] Calculated lattice energy. [c] 

Calculated heat of formation. 

It has recently been found that an electrostatic potential (ESP) that is dominated 

by a positive region usually relates to a higher sensitivity towards mechanical 

stimulus.[4] The positive regions of 6 was calculated at B3LYP/6-311+G(2d,p) 

optimized structure, and the 0.001 electron Bohr-3 isosurface of electron density is 

shown in Figure S7. The positive regions were found to concentrate at the dinitro-

methyl group and extend into the triazole ring, while the negative regions were mainly 

in the trinitromethyl group. Therefore, the atypical imbalance between positive 

regions and negative ones of 6 can result in higher sensitivity, which agrees with its 

experimental data. 
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Figure S7. Electrostatic potential of 6 [B3LYP/6-311+G(2d,p), 0.001 electron/b3 

isosurface, energy values -0.02 to +0.02 Hartree]. 
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