Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supplementary Information Available

Hierarchical Flower-like Nickel Phenylphosphonate Microspheres and Their Calcined Derivatives for Supercapacitor Electrode

Fan Zhang[‡], Yuanyuan Bao[‡], Shuangshuang Ma, Lu Liu, and Xin Shi*

Institute of Chemistry for Functionalized Materials, School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China. (‡These authors contributed equally to this work)

Fig. S1 SEM images of nickel phenylphosphonates synthesized with different hydrothermal reaction time: (a) 2 h; (b) 4 h; (c) 6 h; (d) 8 h.

Fig. S2 FT-IR spectra of PPA (phenylphosphonic acid) and NiPP.

Fig. S3 (a) XPS survey spectrum of NiPP and the high-resolution XPS spectra of (b) Ni 2p; (c) P 2p; (d) C 1s; (e) O1s.

Fig. S5 The specific capacitances *vs.* different current densities (0.5 A g^{-1} to 8 A g^{-1}), i.e., rate capability of four electrode materials.

Fig. S6 Ragone plots of four electrode materials.

The formula calculation for specific capacitance (*C*), energy density (*E*) and power density (*P*) as follows (1)-(3):^{1,2}

$$C (F g^{-1}) = \frac{I\Delta t}{m\Delta V}$$
(1)
$$(Wh kg^{-1}) = \frac{I\Delta V\Delta t}{m}$$
(2)
$$(W kg^{-1}) = \frac{I\Delta V}{m}$$
(3)

Where I is current, Δt is discharging time, m is mass of active material, and ΔV is potential difference.

[1] K. Raju, K. I. Ozoemena, Scientific Reports, 2015, 17629.

[2] B. Senthikumar, Z. Khan, S. Park, K. Kim, H. Ko, Y. Kim, *J. Mater. Chem. A*, 2015, **3**, 21553–21561.