Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Effects of a SnO₂ hole blocking layer in a BiVO₄-based photoanode for photoelectrocatalytic water oxidation

Segi Byun^{*}, Bumsoo Kim, Seokwoo Jeon, Byungha Shin^{*}

Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea

*Corresponding authors:

Segi Byun (segi_byun@kaist.ac.kr) and Byungha Shin (byungha@kaist.ac.kr)

Fig. S1 SEM images of various SnO_2 layers on Si wafer. (a) Surface image of a SnO_2 layer with 65 nm thick. Inset of the figure was a magnified image. Cross-sectional SEM images of (b) 20 nm, (c) 40 nm, and (d) 65 nm thick SnO_2 layers.

Due to the rough surface of FTO substrate, it was hard to measure the exact thickness of SnO_2 buffer layers on FTO; typical surface roughness is around 44 nm RMS as seen in Fig. S2a. Therefore, SnO_2 layers were fabricated on Si wafer and their thickness were measured by using cross-sectional SEM images of each sample. (Fig. S1b–d)

Fig. S2 (a-d) SEM and (e-h) AFM images of bare FTO and various FTO/SnO_2 substrates. As increasing SnO₂ layer thickness on FTO, RMS of FTO/SnO_2 substrate became decreased, indicating much smoother surface than bare FTO.

Fig. S3 SEM images of the cross-section of various $BiVO_4$ based photoanodes. (a) Bare $BiVO_4$, (b) 20 nm, (c) 40 nm, and (d) 65 nm $SnO_2/BiVO_4$. The SnO_2 buffer layers in $SnO_2/BiVO_4$ photoanodes could not be obvious in the SEM images.

Fig. S4 SEM images of the surface of $BiVO_4$ based photoanodes. (a) Bare $BiVO_4$, (b) 20 nm and (c) 40 nm, and (d) 65 nm $SnO_2/BiVO_4$ photoanodes.

Fig. S5 UV/Vis spectra of BiVO₄ based photoanodes. a) Reflectance and b) Transmittance spectra.

Fig. S6 AFM images of the surface of various $BiVO_4$ -based photoanodes. (a) bare $BiVO_4$, (b) 20 nm, (c) 40 nm, and (d) 65 nm $SnO_2/BiVO_4$.

Fig. S7 BiVO₄ film on (a) bare FTO and (b) ITO substrates.

Fig. S8 Magnified region of XRD spectra of the BiVO₄ based photoanodes.

Fig. S9 Tauc plots for all BiVO₄ based photoanodes.

Fig. S10 Thickness optimization of BiVO₄ film created by the modified metal-organic decomposition (MOD) method. LSV curves for bare BiVO₄ with different thickness that measured under (a) front-side and (b) back-side illumination. The repeated deposition number is described as ×number. The optimum thickness of BiVO₄ for best PEC performance was around 180 nm thick (5 times deposition). All LSV measurement was conducted in 0.5 M Na₂SO₄ + KPi buffer solution at the scan rate of 20 mV s⁻¹ under 1 sun illumination.

In order to produce our BiVO₄ film with a comparable PEC performance to other types of BiVO₄

films, bare $BiVO_4$ photoanodes with various film thicknesses were fabricated on pristine FTO substrates by the repeated MOD process. In Fig. S10, LSV curves for bare $BiVO_4$ films with different layer thickness revealed that the optimum thickness of our $BiVO_4$ film was around 180 nm, which was a similar value than an optimum thickness (200 nm) of other $BiVO_4$ films.^{3, 31, 50}

Fig. S11 LSV curves of various $SnO_2/BiVO_4$ photoanodes. For 85 nm $SnO_2/BiVO_4$, 85 nm SnO_2 layer was fabricated on a FTO substrate by two times deposition process with 50 mM and 200 mM Sn precursor solutions.

Our SnO₂ buffer layers were fabricated via a one-step method with a highly concentrated SnCl₂ precursor solution, and therefore, their layer thickness was hard to be increased and limited to around 65 nm thick, due to the limited solubility of SnCl₂ in isopropyl alcohol. In order to optimize SnO₂ layer thickness, a thick SnO₂ layer more than 65 nm was fabricated on FTO substrate through a two-step growth method using SnCl₂ precursor solutions used for growing 20 nm and 65 nm SnO₂

layers, which defined as 85 nm SnO₂. Although another issue such as interface defects of adjacent SnO₂ layers during the fabrication process would be happened, based on the result, as increasing a SnO₂ layer thickness more than 65, the photocurrent density became decreased. Therefore, it could be thought that the optimum thickness of SnO₂ in SnO₂/BiVO₄ photoanode was around 65 nm.

Fig. S12 UPS spectra of all BiVO₄-based photoanodes for their band structure. (a) Whole range, and (b–c) magnified region of UPS spectra to measure the work function and VBM, respectively.

Fig. S13 LSV curves of all BiVO₄ based photoanodes in dark. This measurement was conducted in $0.5 \text{ M Na}_2\text{SO}_4 + \text{KPi}$ buffer solution at the scan rate of 20 mV s⁻¹.

Fig. S14 Photovoltage (V_{ph}) measurement of all BiVO₄ based photoanodes. (a) Open-circuit potential (OCP) measurement versus time in the dark and illumination conditions, and (b) the calculated V_{ph} values as a function of the SnO₂ layer thickness.

~ \	h'			
aj	D,	Sample	R _s (ohm)	R _{ct} (ohm)
R₅ –₩	CPE	Bare BiVO ₄	11.94	11858
		20 nm SnO ₂ /BiVO ₄	12.86	2160
		40 nm SnO ₂ /BiVO ₄	14.03	2489
		65 nm SnO ₂ /BiVO ₄	29.19	1597

Fig. S15 (a) A simple equivalent circuit model for the Nyquist plot fitting (Fig. 4b), and (b) the corresponding fitting results. R_s : series resistance, R_{ct} : charge-transfer resistance, and CPE: constant phase element.

Year	Photoelectrode	Electrolyte	Current density at 1.23 V vs. RHE	Growth method	Ref.
2006	Bare BiVO ₄	0.5 M Na ₂ SO ₄ (pH 5.8)	0.9 mA cm^{-2}	MOD	35
2008	SnO ₂ /BiVO ₄	0.5 M Na ₂ SO ₄ (pH 5.8)	0.01 mA cm ⁻²	MOD	30
2012	Bare BiVO ₄	0.1 M Na ₂ SO ₄ (pH 5.8)	0.45 mA cm^{-2}	MOD	23
2013	WO ₃ /BiVO ₄	0.5 M Na ₂ SO ₄ + 0.1 M K ₂ HPO ₄ (pH 7.0)	$0.8 \mathrm{~mA~cm}^{-2}$	Sputtering	51
2011	Bare BiVO ₄ WO ₃ /BiVO ₄	0.5 M Na ₂ SO ₄ (pH 6.6)	$0.63 \text{ and } 2.78 \text{ mA cm}^{-2}$	Polymer assisted deposition	4
2016	Bare BiVO ₄ , photocharged BiVO ₄	0.1 M KPi (pH 7.2)	0.8 and 3.3 mA cm ⁻²	Modified MOD	43
2016	Bare BiVO ₄ , UV cured BiVO ₄	0.5 M KPi (pH 7.0)	$0.6 \text{ and } 1.2 \text{ mA cm}^{-2}$	MOD	16
2016	WO ₃ /BiVO ₄	1 M Na ₂ SO ₃ + 0.5 M KPi (pH 7.0)	4.55 mA cm^{-2}	Pulsed electrodeposition	31
2012	WO ₃ /SnO ₂ /BiVO ₄	0.1 M Na ₂ SO ₄	1.2 mA cm^{-2}	Wet coating	32
2016	SnO ₂ /BiVO ₄ , SnO ₂ /WO ₃ /BiVO ₄	0.5 M Na ₂ SO ₄ + 0.1 M NaPi (pH 7.0)	$1.2 \text{ and } 1.5 \text{ mA cm}^{-2}$	Pursed laser deposition	52
This work	SnO ₂ /BiVO ₄	0.5 M Na ₂ SO ₄ + 0.1 M KPi (pH 7.0), 1 M Na ₂ SO ₃ + 0.5 M KPi (pH 7.0)	$0.95 \text{ and } 3.76 \text{ mA cm}^{-2}$	Modified MOD	This work

 Table S1. PEC performance comparisons among unmodified BiVO4 based photoanodes.