Supporting Information

Design and synthesis of Porous Channel-rich Carbon Nanofibers for Self-standing Oxygen Reduction Reaction and Hydrogen Evolution Reaction Bifunctional Catalysts in Alkaline Medium

Dongxiao Ji, Shengjie Peng,* Jia Lu, Linlin Li, Guorui Yang, Shengyuan Yang, Xiaohong Qin*, Madhavi Srinivasan and Seeram Ramakrishna

Emails: <u>mpepeng@nus.edu.sg</u> (Shengjie Peng); <u>xhqin@dhu.edu.cn</u> (Xiaohong Qin).

Fig. S1. Scalable preparation of Fe-rich nanofiber films by self-designed free-surface electrospinning setup.

Fig. S2. SEM of the 800 °C carbonized PAN/CA mixed polymers. Abundant pores and defects are formed in the pyrolyzed carbon.

Fig. S3 The morphology of 1:0.2 PAN/CA carbon fiber. (a-b) SEM; (c-d) TEM.

Fig. S4 The morphology of 1:0.5 PAN/CA carbon fiber. (a-b) SEM; (c-d) TEM.

Fig. S5 The morphology of 1:1 PAN/CA carbon fiber. (a-b) SEM; (c-d) TEM.

But description for the second for t

Fig. S7 The XPS survey apectra of Fe-CACNF.

Fig. S8 The N_2 adsorption-desorption isotherms and pore distribution of Fe-CACNFs.

Fig. S9 The LSVs of Fe-CNF and Pt/ C at different rotating speed.

Fig. S10 The K-L plots of Fe-CNF and Pt/C.

Fig. S11 HER Tafel plots of Fe-CNF, Fe-CACNF and Pt/C in 1 M KOH.

Figure S12 ORR stability of Pt/C, Ir/C, Ru/C and Fe-CACNF for 12 h.

Figure S13 HER stability of Pt/C, Ir/C, Ru/C and Fe-CACNF for 12 h.

Catalyst	$E_{onset / V}$	E_{half} – wave / V	electrolyte	Ref.
Fe-CACNF	0.96	0.83	0.1M KOH	This work
Nanoporous carbon nanofiber films	0.97	0.82	0.1M KOH	1
Co ₄ N carbon fibers network and carbon cloth	-	0.80	0.1M KOH	2
P-doped g-C ₃ N ₄ grown on carbon-fiber paper	0.94	0.67	0.1M KOH	3
Ni3Fe-N doped carbon sheets	0.90	0.78 (@-3 mA / cm ²)	0.1M KOH	4
Fe/N-CNTs	0.96	0.81	0.1M KOH	5
Fe @ N-C	~0.95	0.83	0.1M KOH	6
Co@ Co ₃ O ₄ /NC-1	-	0.80	0.1M KOH	7
CoO/N-graphene	\sim 0.90	0.81	1M KOH	8
Co-N-C HHMTs	0.92	0.82	0.1M KOH	9
NixCoyO4/Co–NG	-	0.80	0.1M KOH	10

Table S1 The comparison of the ORR activities for Fe-CACNF with some recently reported ORR catalysts.

Catalyst	Overpotential (mV) vs RHE @ 10 mA cm ⁻²	electrolyte	Ref.
Fe-CACNF	330@10 mA/cm ² 440@80 mA/cm ²	1М КОН	This work
Ni3S2/MWCNTs	480	1M KOH	11
Co/N-doped CNTs	370	1M KOH	12
Fe@N-C	330	1M KOH	13
o-CoSe ₂ /CC	270@10 mA/cm ² 450@65 mA/cm ²	1М КОН	14
FeCo@NCNTs-NH	~ 280	0.1M H ₂ SO ₄	15
N, S-doped graphitic sheets	310	0.1M KOH	16
N, P Co-doped carbon network	470	0.1M KOH	17
Porous N-rich carbon/Co	300	1M KOH	18

Table S2 The comparison of the HER activities for Fe-CACNF with some electrocatalytic activities of the recently reported carbon-based HER catalysts.

References:

- 1. Q. Liu, Y. Wang, L. Dai and J. Yao, Adv. Mater., 2016, 28, 3000.
- 2. F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, J. Am. Chem. Soc., 2016, 138, 10226.
- 3. T. Ma, J. Ran, S. Dai, M. Jaroniec, S. Qiao, Angew. Chem. Int. Edit., 2015, 54, 4646.
- 4. G. Fu, Z. Cui, Y. Chen, Y. Li, Y. Tang, J. Goodenough, Adv. Energy. Mater., 2017, 7, 1601172.
- 5. Liu, H. Jiang, Y. Zhu, X. Yang and C. Li, J. Mater. Chem. A, 2016, 4, 1694.
- 6. J. Wang, H. Wu, D. Gao, S. Miao, G. Wang and X. Bao, Nano Energy, 2015, 13, 387.
- 7. A. Aijaz, J. Masa, C. Rosler, W. Xia, P. Weide, A. J. R. Botz, R. A. Fischer, W. Schuhmann, M. Muhler, *Angew. Chem. Int. Edit.*, 2016, 55, 4087.
- 8. S. Mao, Z. Wen, T. Huang, Y. Hou, J. Chen, Energy Environ. Sci., 2014, 7, 609.
- 9. S. H. Ahn, A. Manthiram, Small, 2017, DOI: 10.1002/smll.201603437.
- 10. Y. Hao, Y. Xu, J. Liu, X. Sun, J. Mater. Chem. A, 2017, DOI: 10.1039/C7TA00299H.
- 11. T. W. Lin, C. J. Liu and C. S. Dai, Appl. Catal. B, 2014, 154-155, 213-220.
- 12. X. C. Zou, X. C. Huang, A. Goswami, R. Silva, B. R. Sathe, E. Mikmekova and T. Asefa, *Angew. Chem. Int. Ed.*, 2014, 53, 4372–4376.
- 13. J. Wang, D. Gao, G. Wang, S. Miao, H. Wu, J. Li, X. Bao, J. Mater. Chem. A, 2014, 2, 20067-20074.
- 14. P. Chen, K. Xu, S. Tao, T. Zhou, Y. Tong, H. Ding, L. Zhang, W. Chu, C. Wu, Y. Xie, *Adv. Mater.*, 2016, 28, 7527-7532.
- 15. J. Deng, P. Ren, D. Deng, L. Yu, F. Yang, X. Bao, Energy Environ. Sci., 2014, 7, 1919-1923.
- 16. C. Hu, L. Dai, Adv. Mater., 2017, DOI: 10.1002/adma.201604942.
- 17. J. Zhang, L. Qu, G. Shi, J. Liu, J. Chen, L. Dai, Angew. Chem. Int. Ed., 2016, 55, 2230.
- 18. X. Li, Z. Niu, J. Jiang, L. Ai, J. Mater. Chem. A, 2016, 4, 3204-3209.