Supporting Information

Copper-Substituted Na_{0.67}Ni_{0.3-x}Cu_xMn_{0.7}O₂ Cathode Materials for Sodium-Ion Batteries with Suppressed P2-O2 Phase Transition

Lei Wang,^{*a,b*} Yong-Gang Sun,^{*b,c*} Lin-Lin Hu,^{*b,c*} Jun-Yu Piao,^{*b,c*} Jing Guo,^{*a,b*} Arumugam Manthiram,^{*d*} Jianmin Ma^{*a*,}* and An-Min Cao^{*b,c*,}*

^aSchool of Physics and Electronics, Hunan University, Changsha 410082, P. R. China

^bKey Laboratory of Molecular Nanostructure and Nanotechnology and Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences(CAS), Beijing 100190, P. R. China

^cUniversity of Chinese Academy of Sciences, Beijing 100049, P. R. China

^dMaterials Science and Engineering Program & Texas Materials Institute, The University of Texas at Austin,

Austin, TX 78712, USA

Figure S1 The Scanning electron microscopy (SEM) images of $Na_{0.67}Ni_{0.3-x}Cu_xMn_{0.7}O_2$ (x=0, 0.1, 0.2 and 0.3) and the corresponding energy dispersive spectroscopy (EDS). a) and b) is for $Na_{0.67}Ni_{0.3}Mn_{0.7}O_2$; b) and b) is for $Na_{0.67}Ni_{0.2}Cu_{0.1}Mn_{0.7}O_2$; e) and f) is for $Na_{0.67}Ni_{0.1}$ $Cu_{0.2}Mn_{0.7}O_2$; g) and h) is for $Na_{0.67}Cu_{0.3}Mn_{0.7}O_2$; g) and h) is for $Na_{0.67}Cu_{0.7}Mn_{0.7}O_2$; g) and h) is for $Na_{0.67}Cu_{0.7}Mn_{0.7}O_2$; g) and h) is for $Na_{0.67}Cu_{0.7}Mn_{0.7}O_2$; g) and h) is for $Na_{0.7}Cu_{0.7}Mn_{0.7}O_2$; g) and h) is for $Na_{0.7}O_2$;

Synthesized samples	structural parameters				
	a (Å)	c (Å)	Cell volume (Å ³)	R _p (%)	
x=0	2.8834(4)	11.1774(1)	80.4816(1)	6.71	
x=0.1	2.8848(4)	11.1992(3)	80.7168(9)	6.43	
x=0.2	2.8867(5)	11.2162(8)	80.9467(3)	7.57	
x=0.3	2.8914(7)	11.2116(1)	81.1780(9)	9.44	

Table S1 Summary of refined structural parameters of $Na_{0.67}Ni_{0.3-x}Cu_xMn_{0.7}O_2$ (x=0, 0.1, 0.2 and 0.3).

Figure S2 XRD analysis for $Na_{0.67}Ni_{0.3-x}Cu_xMn_{0.7}O_2$ (x=0, 0.1, 0.2 and 0.3). a) 2 θ is between 10° and 80°; b) 2 θ is between 30° and 45°. A trace amount of a NiO and CuO impurity are observed in $Na_{0.67}Ni_{0.3}Mn_{0.7}O_2$ and $Na_{0.67}Cu_{0.3}Mn_{0.7}O_2$.

Figure S3 XRD analysis for as-synthesized $Na_{0.67}Ni_{0.3-x}Cu_xMn_{0.7}O_2$ (x=0 and 0.2) electrodes after exposed to air and soaked in water for a month.

Synthesized samples	Measured atomic ratio				
	Na	Cu	Ni	Mn	
x=0	0.659	0	0.273	0.653	
x=0.1	0.655	0.089	0.192	0.667	
x=0.2	0.662	0.185	0.095	0.665	
x=0.3	0.665	0.266	0	0.664	

Table S2 ICP-AES results of $Na_{0.67}Ni_{0.3-x}Cu_xMn_{0.7}O_2$ (x=0, 0.1, 0.2 and 0.3).

Figure S4 XPS survey for $Na_{0.67}Ni_{0.3-x}Cu_xMn_{0.7}O_2$ (x=0, 0.1, 0.2 and 0.3). a) XPS spectra of as-synthesized electrodes; The high resolution XPS spectra of b) Mn 2p, c) Ni 2p and d) Cu 2p.

Figure S5 The typical Galvanostatic discharge/charge curves of a) $Na_{0.67}Ni_{0.3}Mn_{0.7}O_2$, b) $Na_{0.67}Ni_{0.2}Cu_{0.1}Mn_{0.7}O_2$, c) $Na_{0.67}Ni_{0.1}Cu_{0.2}Mn_{0.7}O_2$ and d) $Na_{0.67}Cu_{0.3}Mn_{0.7}O_2$ from 1th cycle to 10th cycle at 0.1C between 2.0-4.5V.

Figure S6 Cycle retentions of the Cu-free $Na_{0.67}Ni_{0.3}Mn_{0.7}O_2$ electrode at different current density with different cut-off voltage.

Cathode materials	Average voltage/voltage range (V)	Initial capacity (mAh g ⁻¹)	Cycle	Ref.
$Na_{2/3}Ni_{1/3}Mn_{5/9}Al_{1/9}O_2$	3.2 / 1.6-4.0	118 / 0.1C	77.5% (100 cycle)	1
$Na_{0.5}[Ni_{0.23}Fe_{0.13}Mn_{0.63}]O_2$	3.2 / 1.5-4.6	200 / 15 mA g ⁻¹	75% (70 cycle)	2
$Na_{0.66}Li_{0.18}Mn_{0.71}Ni_{0.21}Co_{0.08}O_{2^+d}$	3.2/ 1.5-4.5	185 / 20 mA g ⁻¹	84% (50 cycle)	3
$Na_{0.67}Mn_{0.67}Ni_{0.28}Mg_{0.05}O_2$	3.7/ 2.5-4.35V	123 / 17 mA g ⁻¹	85% (50 cycle)	4
$Na_{0.67}Mn_{0.8}Ni_{0.1}Mg_{0.1}O_2$	<3.0 / 1.5-4.2V	171 / 12 mA g ⁻¹	81% (50 cycle)	5
$Na_{0.66}Ni_{0.33-x}Zn_{x}Mn_{0.67}O_{2}$	3.6 / 2.2-4.25V	131 / 12 mA g ⁻¹	89% (30 cycle)	6
$Na_{2/3}Ni_{1/3}Mn_{1/2}Ti_{1/6}O_2$	3.7 / 2.5-4.5V	127 / 12 mA g ⁻¹	86% (20 cycle)	7
$Na[Ni_{0.60}Co_{0.05}Mn_{0.35}]O_2$	<3.0 / 1.5-4.1V	157 / 15 mA g ⁻¹	80% (100 cycle)	8
$Na_{0.8}[Li_{0.12}Ni_{0.22}Mn_{0.66}]O_2$	3.2 / 2.0-4.4V	133 / 12 mA g ⁻¹	86% (50 cycle)	9
$Na_{0.9}[Cu_{0.22}Fe_{0.30}Mn_{0.48}]O_2$	3.2 / 2.5-4.05V	98 / 10 mA g ⁻¹	97% (100 cycles)	10
$Na_{0.67}Mn_{0.7}Ni_{0.3\text{-}x}Cu_{x}O_{2}$	3.5 / 2.0-4.5V	115 / 17 mA g ⁻¹	90% (50 cycle)	This Wor k

 Table S3 Electrochemical properties of current cathode materials.

Reference

[1] X. Zhang, W. Pang, F. Wan, J. Guo, H. Lü, J. Li, Y. M. Xing, J. P. Zhang, X. L. Wu, *ACS Appl. Mater. Interfaces* **2016**, 8, 20650-20659.

[2] I. Hasa, D. Buchholz, S. Passerini, B. Scrosati, J. Hassoun Adv. Energy Mater. 2014, 4, 1400083.

[3] S. H. Guo, P. Liu, H. J. Yu, Y. B. Zhu, M. W. Chen, M. Ishida, H. S. Zhou, *Angew. Chem. Int. Ed.* **2015**, 54, 5894-5997.

[4] P. F. Wang, Y. You, Y. X. Yin, Y. S. Wang, L. J. Wan, L. Gu, Y. G. Guo, *Angew. Chem.* **2016**, 128, 1-6.

[5] Z. Y. Li, R. Gao, J. Zhang, X. Zhang, Z. Hu, X. Liu, J. Mater. Chem. A 2016, 4, 3453-3461.

[6] X. Wu, J. Guo, D. Wang, G. Zhong, M. J. McDonald, Y. Yang, J. Power Sources 2015, 281, 18-26.

[7] H. Yoshida, N. Yabuuchi, K. Kubota, I. Ikeuchi, A. Garsuch, M. Schulz-Dobrick, S. Komaba, *Chem. Commun.* **2014**, 50, 3677-3680.

[8] J. Y. Hwang, S. M. Oh, S. T. Myung, K. Y. Chung, I. Belharouak, Y. K. Sun, *Nat. Commun.* 2015, 6, 6865.

[9] J. Xu, D. H. Lee, R. J. Clément, X. Yu, M. Leskes, A. J. Pell, G. Pintacuda, X. Yang, C. P. Grey, Y. S. Meng, *Chem. Mater.* **2014**, 26, 1260-1269.

[10] L. Mu, S. Xu, Y. Li, Y. S. Hu, H. Li, L. Chen, X. Huang, Adv. Mater. 2015, 27, 6928-6933.

Figure S7 The Nyquist plots gathered by electrochemical impedance spectroscopy (EIS) measurements for $Na_{0.67}Ni_{0.3-x}Cu_xMn_{0.7}O_2$ (x=0, 0.1, 0.2 and 0.3) electrodes after one cycle between 0.1 and 100k Hz.

Figure S8 ex situ XPS spectra of $Na_{0.67}Ni_{0.3-x}Cu_xMn_{0.7}O_2$ (x=0.1 and 0.3). The high resolution XPS spectra of a) Mn 2p, c) Ni 2p and e) Cu 2p in $Na_{0.67}Ni_{0.2}Cu_{0.1}Mn_{0.7}O_2$ electrode before and after charged to 4.5 V; The XPS spectra of b) Mn 2p, d) Ni 2p and f) Cu 2p in $Na_{0.67}Cu_{0.3}Mn_{0.7}O_2$ electrode before and after charged to 4.5 V; The XPS spectra of b) Mn 2p, d) Ni 2p and f) Cu 2p in $Na_{0.67}Cu_{0.3}Mn_{0.7}O_2$ electrode before and after charged to 4.5 V; The XPS spectra of b) Mn 2p, d) Ni 2p and f) Cu 2p in $Na_{0.67}Cu_{0.3}Mn_{0.7}O_2$ electrode before and after charged to 4.5 V; The XPS spectra of b) Mn 2p, d) Ni 2p and f) Cu 2p in $Na_{0.67}Cu_{0.3}Mn_{0.7}O_2$ electrode before and after charged to 4.5 V; The XPS spectra of b) Mn 2p, d) Ni 2p and f) Cu 2p in $Na_{0.67}Cu_{0.3}Mn_{0.7}O_2$ electrode before and after charged to 4.5 V. (# correspond to shake-up peaks)

Figure S9 In situ XRD patterns collected during the first charge/discharge process of the $Na_{0.67}Ni_{0.2}Cu_{0.1}Mn_{0.7}O_2$ electrodes between 2.0 and 4.5 V under a current rate of 0.1 C.

Figure S10 Ex situ XRD analysis for $Na_{0.67}Ni_{0.3-x}Cu_xMn_{0.7}O_2$ (x=0, 0.1, 0.2 and 0.3) electrodes. The patterns are collected after as-synthesized electrodes being charged to 4.5V and using Be as X-ray window.