Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Hybrid n-type $Sn_{1-x}Ta_xO_2$ nanowalls bonded with graphene-like layers as high performance electrocatalyst for flexible energy conversion device

Yandong Duan,^{‡ab} Nianqing Fu,^{‡c} Sibai Li,^{‡a} Xiaoyang Yang,^a Jiaxin Zheng,^{*a} Yuan Lin,^{*ab} and Feng Pan^{*a}

^aSchool of Advanced Materials, Peking University, Peking University Shenzhen Graduate School,

Shenzhen 518055, China

^bBeijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Institute of

Chemistry, Chinese Academy of Sciences, Beijing 100190, China

^cSchool of Material Science and Engineering, South China University of Technology, Guangzhou 51064

0, China

Corresponding author. Email address: <u>panfeng@pkusz.edu.cn</u> (F. Pan) ^{}These authors contributed equally to this work.

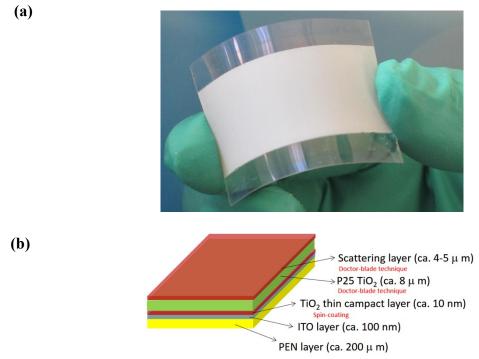
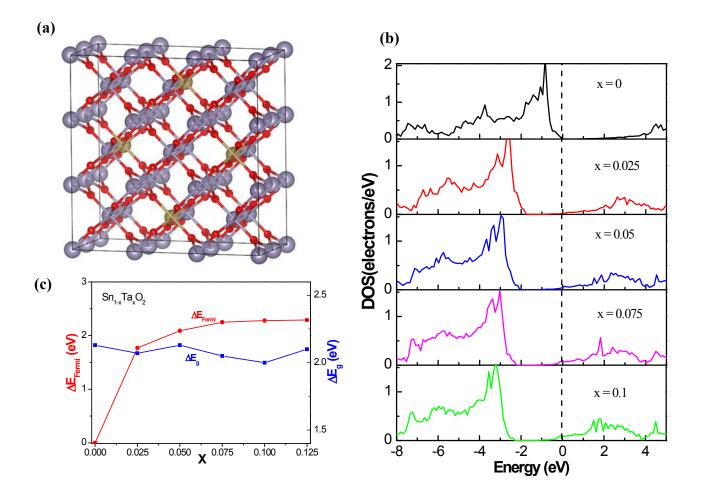



Fig. S1 (a) Digital photograph of plastic working electrode in this study; (b) Configuration of the cross-section for the working electrode. The numbers in brackets are thicknesses for every layer.

Fig. S2 (a) Configurations of $Sn_{0.9}Ta_{0.1}O_2$. Grey ball: Sn; green ball: Ta; red ball: O. (b) Total density of states for $Sn_{1-x}Ta_xO_2$ when x = 0, 0.025, 0.05, 0.075, and 0.1, respectively. The energy of the valence band maximum of intrinsic SnO_2 is set to 0. (c) Fermi level shift (red line) and band gap (blue line) as a function of the level of Sn substitution by Ta.

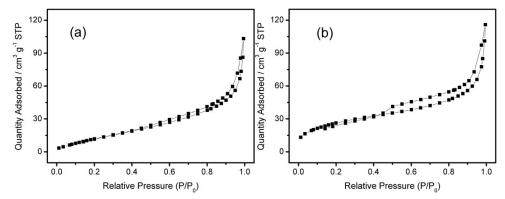


Fig. S3 N_2 adsorption-desorption isotherms of (a) $Sn_{0.925}Ta_{0.075}O_2$ and (b) $Sn_{0.925}Ta_{0.075}O_2/C.$

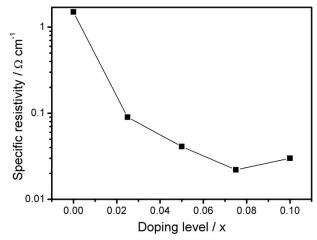


Fig. S4 Specific resistivity as a function of doping level for Sn_{1-x}Ta_xO₂ nanowall films.

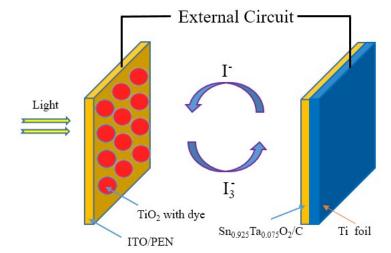
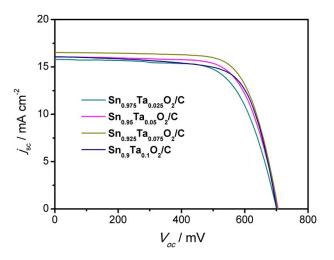



Fig. S5 Configuration of full flexible dye-sensitized solar cells in this study.

Fig. S6 *j*-*V* curves based on $Sn_{1-x}Ta_xO_2/C$ hybrid structures.

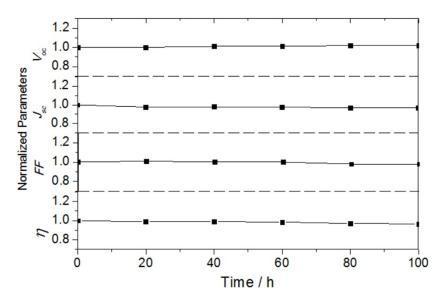


Fig. S7 The long-term stability of full flexible DSSCs assembled with $Sn_{0.925}Ta_{0.075}O_2/C$ based electrode.

Table S1 Results of the impedance measurements.

samples	$R_{\rm s}$	$R_{\rm ct}/\Omega{ m cm}^{-2}$	mF /cm ⁻²
Pt	7.2	2.0	0.14
SnO_2	20.2	8.2	1.66
SnO ₂ -C	11.5	3.6	2.10
Sn _{0.975} Ta _{0.025} O ₂ /C	10.3	2.8	2.27
Sn _{0.95} Ta _{0.05} O ₂ /C	10.0	2.6	2.43
Sn _{0.925} Ta _{0.075} O ₂ /C	9.0	2.1	2.36
$Sn_{0.9}Ta_{0.1}O_2/C$	11.3	2.8	2.23