Supporting Information

Modified Chalcogens with Tuned Nano-Architecture for High Energy Density and Long Life Hybrid Super Capacitor

Salah Abureden, Fathy M Hassan, Gregory Lui, Serubbabel Sy, Rasim Batmaz, Wook Ahn, , Aiping Yu, and Zhongwei Chen

Figure S 1. A) XRD shift of plane (511), B) TGA of VNCS

Figure S 2. SEM images showing the graphene wrapping of NCS in GNCS

Figure S3. XPS results, A-C) Ni 2p, Co 2p and S2p XPS spectra, respectively for NCS sample, and D-G) Ni 2p, Co 2p, S2p and C 1s XPS spectra, respectively for GNCS

Sample	Peak	BE (eV)	FWHM (eV)	Area (P) CPS (eV)	Atomic ratio (%)
NCS	Ni 2p	854.84	2.38	105871.61	14.002
	Co 2p	780.28	3.65	205211.37	28.432
	S 2p	163.2	2.08	68967.12	57.580
GNCS	Ni 2p	854.88	2.44	200901.38	9.528

	Co 2p	780.25	3.61	392198.45	19.542
	S 2p	162.18	2.04	128769.93	38.792
	C1S	284.88	1.35	52742.86	32.136
VNCS	Ni 2p	854.05	2.31	56626.06	11.106
	Co 2p	779.58	3.53	106986.08	21.978
	S 2p	162.05	2.01	36049.18	44.733
	C1S	284.62	1.37	13103.64	21.745
	V 2p	516.40	1.21	1945.99	0.443

Table S 1. Detailed information about peaks of different elements in the three materials

Figure S4. A) CV test of the nickel foam compared to NCS, B-C) CV test of NCS and GNCS at different scan rates, and D) Areal capacitance variation with mass loading of VNCS

Figure S5. CD results of NCS and GNCS at different current densities

Figure S6. A) Specific capacitance values of all samples at different current rates, and B) Capacitance retention of all samples at all current densities.

Figure S 7. Columbic efficiency throughout the testing cycles

Ref.	Ref. Material		Cs @ 2Ag ⁻¹ (Fg ⁻¹)	Capacitance retention (%)		Long cycling (Cycles	Capacita nce at Cycle # 1	Reported Capacitanc e retention	Cs Retention at 10000 cycles (%)
				20 Ag-1	50 Ag-1	(<i>a</i>) current density)	(Fg ⁻¹)	(% @ number of cycles)	
This Work	V-Modified NiCo ₂ S ₄ /Graphene	2.03-2.25	1339	82	76.5	10000 @ 10A/g	1160.6	90.5 @10000 cycles	90.5
(Ref) ¹	NiCo ₂ S ₄ ultrathin Nano sheets/Graphene	Not reported	1451 @ 3A g ⁻¹	52.4	Not reported	2000@ 5A g ⁻¹	1161	95.4 @ 2000 cycles	Not reported
(Ref) ²	NiCo ₂ S ₄ Nano sheets/Ultrathin	4	1304	85.6	Not reported	6000@8 Ag ⁻¹	1248	~ 81 @6000 cycles	Not reported
(Ref) ³	NiCo ₂ S ₄ / Graphene/MoS2	5	1270@ 1Ag ⁻¹	45	Not reported	4000@ 5Ag ⁻¹	1002	92 @ 4000	Not reported
(Ref) ⁴	NiCo ₂ S ₄ NS/NCF	2.3	1231	71	Not reported	2000@ 10A g ⁻¹	1025	90.4 @200	No reported
(Ref) ⁵	(3D) Ni _x Co _{1_x} S ₂ /graphene composite hydrogels	5	1166 @ 1Ag ⁻¹	48	Not reported	1000@ 5 A g ⁻¹	1084	69.4 @ 1000 cycles	Not reported
(Ref) ⁶	NiCo ₂ S ₄ urchin-like	2-3	1149 @1 Ag-1	77.3	66.2	5000@ 20 Ag ⁻¹	888	91.4 @ 5000	Not reported
(Ref) ⁷	NiCo ₂ S ₄ porous nanotubes	4-6	1093 @ 0.2 Ag ⁻¹	Not reporte d	Not reported	1000@ 1 Ag ⁻¹	933	63 @ 1000 cycle	Not reported
(Ref) ⁸	NiCo ₂ S ₄ /ball-in-ball hollow spheres	5	1036 @ 1 Ag ⁻¹	68.1	Not Reported	2000@ 5Ag ⁻¹	892	87 @ 2000 cycles	Not reported
(Ref) ⁹	$Ni_{x}Co_{3_{x}}S_{4}$ Hollow Nano prisms	1.0	895.2 @ 1Ag ⁻¹	65.3	Not reported	1500@ 5 Ag ⁻¹	782	85.7	No reported
(Ref) ¹⁰	NiCo ₂ S ₄ nanotubes/binder free	4.2	738@2 Ag ⁻¹	73 @ 32 Ag ⁻¹	Not reported	4000@ 8 Ag ⁻¹	738	93.4 @ 4000 cycles	Note reported
(Ref) ¹¹	NiCo ₂ S ₄ Nanoplates/ Hollow Hexagonal	Not reported	437	52.8	Not reported	1000@ 2Ag ⁻¹	388	63 @ 1000 cycles	Not reported

Table S2. Comparison between our work and recent reports

Figure S 8 A) CV, and B) Charge-discharge tests of tests of AC/G electrode

Figure S 9 CV test at different scan rates of A) NCS samples, and B) GNCS sample

Figure S 10 Charge-Discharge at different current densities of A) P HSC, and B) G HSC

Figure S 11. A) Capcitance values of all samples at different current densities, and B) Capacitance retention of all samples comapred to the capacitance value of each sample at 2 Ag^{-1}

References

- 1 Peng, S. *et al.* In situ growth of NiCo2S4 nanosheets on graphene for high-performance supercapacitors. *Chemical Communications* **49**, 10178-10180, doi:10.1039/C3CC46034G (2013).
- 2 Li, X., Li, Q., Wu, Y., Rui, M. & Zeng, H. Two-Dimensional, Porous Nickel–Cobalt Sulfide for High-Performance Asymmetric Supercapacitors. *ACS Applied Materials & Interfaces* **7**, 19316-19323, doi:10.1021/acsami.5b05400 (2015).
- 3 Shen, J. *et al.* Controlled synthesis and comparison of NiCo2S4/graphene/2D TMD ternary nanocomposites for high-performance supercapacitors. *Chemical Communications* **52**, 9251-9254, doi:10.1039/C6CC03699F (2016).
- 4 Shen, L. *et al.* NiCo2S4 Nanosheets Grown on Nitrogen-Doped Carbon Foams as an Advanced Electrode for Supercapacitors. *Advanced Energy Materials* **5**, 1400977-n/a, doi:10.1002/aenm.201400977 (2015).
- 5 Li, G. & Xu, C. Hydrothermal synthesis of 3D Ni x Co1– x S2 particles/graphene composite hydrogels for high performance supercapacitors. *Carbon* **90**, 44-52, doi:10.1016/j.carbon.2015.03.066 (2015).
- 6 Chen, H. *et al.* Highly conductive NiCo2S4 urchin-like nanostructures for high-rate pseudocapacitors. *Nanoscale* **5**, 8879-8883, doi:10.1039/C3NR02958A (2013).
- 7 Wan, H. *et al.* NiCo2S4 porous nanotubes synthesis via sacrificial templates: high-performance electrode materials of supercapacitors. *CrystEngComm* **15**, 7649-7651, doi:10.1039/C3CE41243A (2013).
- Liu, Q. *et al.* One-pot synthesis of nitrogen and sulfur co-doped graphene supported MoS2 as high performance anode materials for lithium-ion batteries. *Electrochimica Acta* 177, 298-303, doi:<u>http://dx.doi.org/10.1016/j.electacta.2015.01.193</u> (2015).
- 9 Yu, L., Zhang, L., Wu, H. B. & Lou, X. W. Formation of Ni x Co3–x S4 Hollow Nanoprisms with Enhanced Pseudocapacitive Properties. *Angewandte Chemie International Edition* **53**, 3711-3714, doi:10.1002/anie.201400226 (2014).

- 10 Pu, J. *et al.* Direct Growth of NiCo2S4 Nanotube Arrays on Nickel Foam as High-Performance Binder-Free Electrodes for Supercapacitors. *ChemPlusChem* **79**, 577-583, doi:10.1002/cplu.201300431 (2014).
- 11 Pu, J. *et al.* Preparation and Electrochemical Characterization of Hollow Hexagonal NiCo2S4 Nanoplates as Pseudocapacitor Materials. *ACS Sustainable Chemistry & Engineering* **2**, 809-815, doi:10.1021/sc400472z (2014).