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Here we provide further details on (i) the calculation of formation energy and elastic 
properties (section 1) (ii) comparison of our theoretical results with a well studied half 
Heusler alloy, namely ZrNiSn (section 2) (iii) phonon properties of the concerned system i.e. 
HfRhBi, ZrIrBi and ZrRhBi (section 3) 
 
Section 1 
 
Formulae for calculation of formation energy and elastic properties: - 
 
The formation energy ∆𝐸! with respect to the elemental stable phase is calculated using the 
following formula, 

∆𝐸! = 𝐸!"! − 𝑤!𝜇!!                                            (1)                                       
  
Where, 𝐸!"! is the total energy of alloy per atom, 𝑤! is the weight factor and 𝜇!  corresponds to 
the chemical potential of each constituent element in the alloy that represents the total energy 
per atom in its bulk equilibrium state. Here bulk Hf and Zr are in hcp, Rh and Ir in fcc and Bi 
in monoclinic phase.  
 
Mechanical stability of the materials is an important property to be assess their thermo 
electrics. A material with high values of elastic modulus can be subjected to various stresses 
without changing its properties significantly. In addition to the chemical stability, the 
mechanical stability of the present alloys (space group F-43m) has also been checked by 
satisfying the well-known Born-Huang criteria [1] involving the elastic constants 𝐶!" , given 
by the following relations, 

𝐶!! − 𝐶!"
2 > 0,

(𝐶!! + 2𝐶!")
3 > 0,𝐶!! > 0           (2) 

 
The bounds on the values of bulk modulus (B) and shear modulus (G) was originally given by 
Reuss [2] and Voight [3] which was later improved by Hashin and Shtrikman [4] for cubic 
crystals. The bulk modulus and Young's modulus (Y) are calculated using the following 
formulae, [5] 

 𝐵 =
1
3 (𝐶!! + 2𝐶!")                                                    (3) 

𝐺! =
!
!
(𝐶!! − 𝐶!") and 𝐺! = 𝐶!! where 𝐺! and 𝐺! are the upper (whichever is larger) and 

lower bound of the shear modulus G. 

𝐺 =
𝐺! + 𝐺!

2       , 𝑌 =
9𝐵𝐺
3𝐵 + 𝐺                          (4) 
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Section 2 
 
Validation of Computational procedure: comparison with experiment for 
ZrNiSn: - 
 
In order to validate our calculation procedure and gain more confidence on the predictability 
power for the new systems studied here, we performed a thorough ab-initio calculation for 
pure ZrNiSn, which is the most widely studied material for the thermoelectric properties in 
the half-Heusler family. In this section we present a fair comparison of our results with some 
of the available data as can be seen in Table S.1. 
                                                                    

T = 773 K & 𝑛! 
= 0.86x1020 cm-3 

𝑆(𝜇𝑉𝐾!!) 𝜎(Ω!!𝑚!!) ZT 

Experiment [6] -266 4.5x104 ~0.45 
Our results -278 4.7x104   0.30 

 
Table S1 : Comparison of our theoretically calculation Seebeck coefficient (S), electrical 
conductivity (𝜎) and the figure of merit (ZT) with experiment [6] for n-type ZrNiSn at carrier 
concentration nc=0.86x1020 cm-3 and temperature T=773 K. 
 
Table S.1 presents a comparison of our theoretical result with the experiment [6] on the 
Seebeck coefficient (S), electrical conductivity (𝜎) and the figure of merit (ZT) for n-type 
ZrNiSn at a carrier concentration nc 0.8686x1020 cm-3 and temperature 773 K. One can notice 
that S and 𝜎 agrees fairly well. There is of course some noticeable difference in the ZT values. 
This difference is attributed to the presence of intrinsic defects, imperfections in the measured 
sample which usually occur during sample preparation, and which certainly changes the 
carrier concentration. Our theoretical results, however, are for 100% pure and dense sample. 
This can be one of the reasons for different optimal values of 𝑛!. 
However according to our calculation there is another optimal carrier concentration 
(𝑛!=3.61x1020 cm-3) which corresponds to maxima in the ZT-value instead of S2 𝜎. These ZT 
values are 0.32 at 773K and even higher (0.36) at 1150 K. We also found that there is an 
optimal p-type carrier concentration (𝑛!=9.03x1020 cm-3) in which ZT is coming out to be 
even higher (0.38) at 1150K. 
   We also compared our calculated lattice thermal conductivity (𝜅!) with available 
experimental data [7]. Figure S1 shows a comparison of our calculated 𝜅! with 
experimentally available data for levitation melted (LM) coarse grained sample and melt-spun 
(MS) submicron grain size sample of pure ZrNiSn [7]. It is clear from the figure that when we 
use a 2x2x2 supercell with up to 2nd nearest neighbour interactions only to calculate the force 
constants, the calculated 𝜅! does not compare well. However, a 4x4x4 supercell which 
include 4th nearest neighbour interaction in the force constants calculation, gives a much 
better comparison with experiment. 
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Figure S1 : Comparison of our calculated lattice thermal conductivity for ZrNiSn with the 
available experimental data [7]. Here 2x2x2 and 4x4x4 indicate the simulated results with a 
2x2x2 and 4x4x4 supercell of the primitive ZrNiSn cell. LM stands for levitation melted 
coarse grained sample and MS for melt-spun submicron grain size sample of pure ZrNiSn. 

 
Section 3 
 
Phonon properties of XYBi (X=Hf, Zr; Y=Rh, Ir): - 
 
 

 
 Figure S2: Phonon dispersion and phonon density of states by applying LO-TO correction 
(bottom) and without LO-TO correction (top) for HfRhBi  (left), ZrIrBi (center) and ZrRhBi  
(right) 
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Figure S2 shows the phonon density of states and phonon dispersion curves along the high 
symmetry lines for the three systems. The three atoms give rise to nine phonon branches, i.e., 
one longitudinal acoustic (LA) mode, two transverse acoustic (TA) modes, two longitudinal 
optical (LO) modes, and four transverse optical (TO) modes. The two TA modes along the Γ-
L and Γ-X directions are two-fold degenerate. 
 
Due to displacement of charges of long-wavelength LO modes, internal electric dipoles are 
produced which leads to internal electric field. The phonon frequencies for the LO modes at 
the Γ point shift up due to this induced electric field. Thus, the LO-TO splitting is an 
important parameter to evaluate the strength of ionicity. The phonon dispersion curves and 
DOS shown in Figure S1 have both the plots, namely with (below) and without (above) 
including the LO-TO splitting. 
 
Clearly, the phonon dispersion (below) for the three systems show LO-TO splitting at the Γ 
point, which implies the existence of the ionic bonding in crystal (more the splitting, more the 
ionic character). As can be seen from the figure, ZrRhBi has the maximum LO-TO splitting, 
suggesting it to have the highest ionic character. 
 
Looking at the phonon DOS for HfRhBi, it is seen that the low-frequency branches up to 3 
THz are mainly from the Bi atomic vibrations, while the frequency branches between 3 THz 
and 4.5 THz are mainly from the Hf atomic vibrations. The Rh atomic vibrations contribute to 
the high-frequency branches above ~4.8 THz. This is due to the difference in masses of the 
three elements. Rh being the lightest (mass=102.9 amu) vibrating at highest frequencies and 
Bi being heaviest (mass=208.98) vibrates at the lowest frequencies. The acoustic and optical 
branches overlap near the L point and between Γ-X direction for HfRhBi due to the 
comparable masses of the three elements. 
 
For ZrIrBi, Ir (mass=192.22 amu) and Bi having comparable masses dominate the low-
frequency branches up to 4.5 THz. The Zr atom being lightest (mass=91.22 amu), contribute 
to the high-frequency atomic vibrations (above ~4.8 THz). Due to the comparable masses of 
Bi and Ir and their noticeable difference with Zr, there is a gap in between the acoustic and 
optic branches.  
 
In ZrRhBi, The masses of Zr and Rh are comparable and lower than that of Bi, thus they 
contribute to the higher frequencies (>4 THz) whereas Bi being much heavier contributes to 
the lower frequencies (<3.5 THz). The large mass difference between these atoms causes even 
higher gap between the acoustic and optical branches. Due to this large mass difference, the 
𝜅! values are lower for ZrRhBi as compared to HfRhBi and ZrIrBi. 
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