Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supplementary Information for:

Structure and unconventional dihydrogen bonding of a pressure-stabilized hydrogen-rich

$(NH_{3}BH_{3})(H_{2})_{x}$ (x = 1.5) compound

Yu Lin, **a Evan Welchman, *b Timo Thonhauser, bc and Wendy L. Maoad

^aStanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA

^bDepartment of Physics, Wake Forest University, Winston-Salem, NC 27109, USA

^cDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

^dDepartment of Geological Sciences, Stanford University, Stanford, CA 94305, USA

[‡]These authors contributed equally to this work.

*Corresponding author: lyforest@stanford.edu

Figures S1–S4

Fig. S1 A photomicrograph showing the reacted AB-H₂ phase surrounded by excess H₂ in a Be-Cu gasket hole. The square grid box with 5 μ m grid spacing is the 60 x 60 μ m² sample box through which X-rays scanned for collecting diffraction patterns.

Fig. S2 A 2D Debye-Scherrer pattern obtained through summing up a total of 300 high-quality diffraction images. The red patches are masks for single crystal diamond reflections.

Fig. S3 The caked XRD pattern of $AB-H_2$ at 6.2 GPa showing detector azimuth (degrees) versus 20. The texture is clearer in this caked pattern.

Fig. S4 The intramolecular H-H bond length of the nine H_2 molecules in the unit cell of the new AB-H₂ phase. The H₂ molecules are labeled from 1 to 9 in the left panel, and the corresponding bond length of each molecule is plotted in the right panel. The nine molecules can be easily divided into two groups based on the bond length difference. Group 1 that contains seven H₂ molecules shows an average of 0.3% bond length elongation compared to group 2 molecules.