Effects of Proton Irradiation on TiO₂ Nanotube Electrode for Lithium-ion Batteries

Kassiopeia Smith,^a Andreas Savva,^a Janelle Wharry,^b Changjian Deng,^a Janelle P. Wharry,^b Sooyeon

Hwang,^c Dong Su,^c Yongqiang Wang,^d Jue Gong,^e Tao Xu,^e Darryl P. Butt,^f and Hui Xiong^{*}

^a Micron School of Materials Science and Engineering, Boise State University, Boise ID 83725

^b School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907

^c Center for Functional Materials, Brookhaven National Laboratory, Upton, NY

^d Ion Beam Materials Laboratory, Los Alamos National Laboratory, Los Alamos, NM

^e Department of Chemistry & Biochemistry, Northern Illinois University, Dekab, IL

^f College of Mines and Earth Sciences, University of Utah, Salt Lake City, Utah

*Corresponding Author. Tel: (208) 426-5671 Email: ClaireXiong@BoiseState.edu

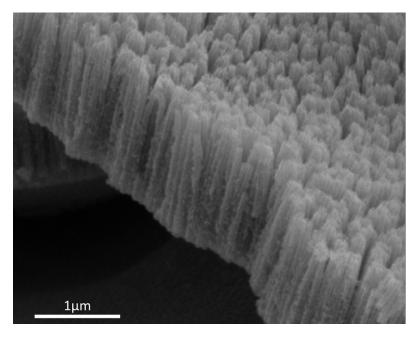
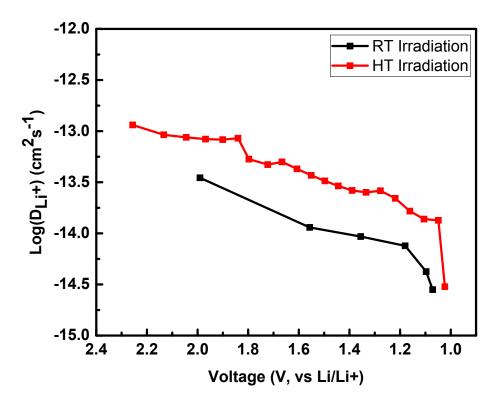
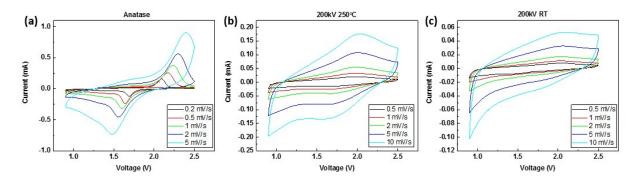




Figure S1: SEM cross-section view of TiO₂-NT film before irradiation. The nanotubes are \sim 1µm tall.

Figure S2: Diffusion coefficients for room temperature and high temperature proton irradiated TiO_2 nanotubes as calculated by GITT.

Figure S3: Cyclic voltammograms at various scan rates for (a) unirradiated anatase, (b) proton irradiated HT and (c) proton irradiated RT TiO₂-NT electrodes.