Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information

Facile synthesis of metal hydroxide nanoplates and their applications to lithium ion battery anodes

Dong Jun Lee,¹ Seung-Ho Yu,¹ Hyeon Seok Lee, Aihua Jin, Jisoo Lee, Ji Eun Lee, Yung-Eun Sung^{*} and Taeghwan Hyeon^{*}

¹*These authors contributed equally to this work.*

Fig. S1 (a-c) TEM image and (d-f) XRD data of nanoparticles obtained under an air atmosphere. (a,d) Cobalt, (b,e) manganese, and (c,f) iron. All scale bars are 200 nm.

Fig. S2 Dark-field STEM image and corresponding EDX elemental mapping images of various mixed-metal (oxy)hydroxide nanoplates. (a) Co-Mn, (b) Co-Fe, (c) Mn-Fe, and (d) Co-Mg.

Fig. S3 Dark-field STEM image and corresponding EDX elemental mapping images of various mixed-metal (oxy)hydroxide nanoplates. (a) Co-Mn-Fe and (b) Co-Mn-Fe-Mg.

Fig. S4 TEM image, SAED pattern, and corresponding EFTEM images of Co-Fe (oxy)hydroxide nanoplate.

Fig. S5 TEM image, SAED pattern, and corresponding EFTEM images of Co-Mg (oxy)hydroxide nanoplates

Fig. S6 TEM image, SAED pattern, and corresponding EFTEM images of Mn-Fe-Mg (oxy)hydroxide nanoplate.

Fig. S7 (a-f) TEM images of Co(OH)₂@polydopamine core–shell nanoplates with various thicknesses of the polydopamine shell. All scale bars are 50 nm.

Fig. S8 XRD patterns of CoO@C with various carbon shell thicknesses.

Fig. S9 Large-scale synthesis of CoO@C-3. From a single batch, ~1.5 g of CoO@C was obtained.

Fig. S10 N_2 adsorption and desorption isotherms and the corresponding pore size distribution of (a) CoO@C-1, (b) CoO@C-2, and (c) CoO@C-3.

Fig. S11 Cyclic voltammograms of CoO@C-1, CoO@C-2 and CoO@C-3 for the initial 5 cycles at a scan rate of 0.1 mV s⁻¹.

Fig. S12 Impedance spectra of CoO@C-1 and CoO@C-3 (a) before cycling and (b) after 1 cycle. (c) The equivalent circuit for the fitting. The charge transfer resistance (R_{ct}) of CoO@C-1 and CoO@C-3 before cycling are 0.248 and 0.192 Ω g, respectively. They significantly decreased after 1 cycle (0.045 Ω g for CoO@C-1 and 0.031 Ω g for CoO@C-3).

Fig. S13 EDX spectrum of CoO@C-1/Li cell on the lithium electrode surface after 20 cycles.

Fig. S14 (a) SEM image and EDX maps of (b) O, (c) C and (d) Fe for CoO@C-1/Li cell on the

lithium electrode surface after 20 cycles.

Fig. S15 EDX spectrum of CoO@C-3/Li cell on the lithium electrode surface after 20 cycles.

Fig. S16 (a) SEM image and EDX maps of (b) O, (c) C and (d) Fe for CoO@C-3/Li cell on the

lithium electrode surface after 20 cycles.

Fig. S17 Charge/discharge voltage profiles of (a) MnO@C, and (b) Fe₃O₄@C during the initial 3 cycles.

	Carbon (wt%)	Hydrogen (wt%)	Nitrogen (wt%)	Total (wt%)
CoO@C-1	6.286	0.423	0.834	7.543
CoO@C-2	15.071	0.758	2.020	17.869
CoO@C-3	25.404	1.161	3.346	29.911

Table S1. CHN elemental analysis data for CoO@C.

Table S2. Inductively coupled plasma (ICP) results of cobalt concentration in electrolyte after 20 cycles.

Samples	Cobalt concentration in electrolyte	
Standard (blank)	0.008489	
Standard (1)	0.248936	
Standard (10)	2.20476	
Standard (20)	4.21952	
Standard (40)	8.43477	
CoO@C-1	0 (ppm)	
CoO@C-2	0 (ppm)	
CoO@C-3	0 (ppm)	

Table S3. EDX results of CoO@C-1/Li cell on the lithium electrode surface after 20 cycle test.

Element	Series	Concentration norm. (wt%)	Concentration atom. (at%)	Concentration error. (wt%)
Oxygen	K-series	52.62	57.07	17.80
Carbon	K-series	19.40	28.02	7.96
Fluorine	K-series	13.73	12.54	5.99
Platinum	M-series	11.90	1.06	1.38
Phosphorous	K-series	2.35	1.31	0.35

Table S4. EDX results of CoO@C-3/Li cell on the lithium electrode surface after 20 cycle test.

Element	Series	Concentration norm. (wt%)	Concentration atom. (at%)	Concentration error. (wt%)
Oxygen	K-series	63.56	69.81	25.81
Carbon	K-series	15.08	22.07	8.47
Fluorine	K-series	7.42	6.86	5.22
Platinum	M-series	13.94	1.26	1.87