Highly stable non-noble metal Ni_2P co-catalyst for increased H_2 generation by g-C₃N₄ under visible light irradiation

Ping Ye,^a Xinling Liu,^a James Iocozzia,^b Yupeng Yuan,^{*a, b} Lina Gu,^a Gengsheng Xu,^a Zhiqun

Lin*^b

^a School of Chemistry and Chemical Engineering, Anhui University, Hefei 230036, P. R. China.

^b School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA

30332, USA.

Corresponding authors:

Email: <u>yupengyuan@ahu.edu.cn</u> (Y. Yuan); <u>zhiqun.lin@mse.gatech.edu</u> (Z. Lin).

Fig. S1 FT-IR spectra of pure $g-C_3N_4$ and $g-C_3N_4/Ni_2P$ composites with various amount of Ni₂P (i.e. 2wt%, 4wt%, and 8wt%). FT-IR for Ni₂P is also provided for reference.

Fig. S2 XPS spectra of Ni 2p binding energy in (a) pure Ni_2P and (b) $g-C_3N_4/Ni_2P(8wt\%)$ sample.

Fig. S3 XPS spectra of P 2p binding energy in (a) pure Ni_2P and (b) g-C₃N₄/Ni₂P(8wt%) samples.

Fig. S4 XPS spectra of C 1s binding energy in pure $g-C_3N_4$, a physical mixture of $g-C_3N_4$ and Ni_2P (2 wt%), $g-C_3N_4/Ni_2P$ (2 wt%), and $g-C_3N_4/Ni_2P$ (8 wt%) samples.

Fig. S5 XPS spectra of N 1s binding energy in pure $g-C_3N_4$, a physical mixture of $g-C_3N_4$ and Ni₂P (2 wt%), $g-C_3N_4/Ni_2P$ (2 wt%), and $g-C_3N_4/Ni_2P$ (8 wt%) samples.

Fig. S6 UV-vis absorption spectra of pure $g-C_3N_4$, $g-C_3N_4/Ni_2P$ (2 wt%), and a physical mixture of $g-C_3N_4$ and Ni_2P (2 wt%).

Fig. S7 SEM images of (a) pure $g-C_3N_4$, (b) $g-C_3N_4/Ni_2P(2wt\%)$, (c) $g-C_3N_4/Ni_2P(4wt\%)$, and (d) $g-C_3N_4/Ni_2P(8wt\%)$ sample. The scale bar is 1 μ m.

Fig. S8 Elemental mapping for C, N, Ni, and P in $g-C_3N_4/Ni_2P(2wt\%)$ sample.

Fig. S9 TEM image of a $g-C_3N_4/Ni_2P(8wt\%)$ sample. The growth and aggregation of Ni_2P particle is highlighted by the dashed circles.

Fig. S10 XRD patterns of a g-C $_3N_4/Ni_2P(2wt\%)$ sample before and after 24 h long-term H₂ evolution testing.

Fig. S11 TEM image of a $g-C_3N_4/Ni_2P(2wt\%)$ sample after 24 h long-term H_2 evolution testing. Ni₂P particles are shown by dashed circles.

Fig. S12 TEM image of a g-C_3N_4/Pt (0.5 wt%) sample after 24 h long term $\rm H_2$ evolution testing.

Fig. S13 Stable photoluminescence spectra of pure $g-C_3N_4$, $g-C_3N_4/Ni_2P(2wt\%)$, $g-C_3N_4/Ni_2P(8wt\%)$, $g-C_3N_4/Pt(0.5wt\%)$, and a physical mixture of $g-C_3N_4$ and $Ni_2P(2wt\%)$ measured in the solid state.

Fig. 14 Time-resolved photoluminescence decay spectra of pure $g-C_3N_4$, $g-C_3N_4/Ni_2P(2wt\%)$, and $g-C_3N_4/Ni_2P(8wt\%)$ measured in the solid state. The fitted lifetime from the fluorescence decays are illustrated in the table (inset).