Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty nanovoids as anode materials for Na-ion batteries

Jin-Sung Park^a and Yun Chan Kang^{a,*}

^aDepartment of Materials Science and Engineering, Korea University, Anam-Dong, Seongbuk-Gu, Seoul 136-713, Republic of Korea.

*Correspondence authors. E-mail: yckang@korea.ac.kr (Yun Chan Kang, Fax: (+82) 2-928-3584)

Fig. S1. Morphologies of the precursor microspheres obtained by spray drying process: (a) low resolution and (b) high resolution SEM images.

Fig. S2. XRD patterns of the multiroom-structured MoX_2 -Ni X_y (X= S or Se) and MoX_2 -Ni X_y -C microspheres. (a) MoS_2 -Ni $9S_8$ -C, (b) MoS_2 -Ni $9S_8$, (c) $MoSe_2$ -NiSe-C, and (d) $MoSe_2$ -NiSe-NiSe_2.

Fig. S3. Morphology and crystal structure of the NiMoO₄ microspheres with empty nanovoids obtained from oxidation of the spray dried powders at 500 °C: (a) low resolution and (b) high resolution SEM images, and (c) XRD pattern.

Fig. S4. Morphologies, SAED pattern, and elemental mapping images of the multiroom-structured MoSe₂-NiSe-NiSe₂ microspheres: (a) SEM image, (b-d) TEM images, (e) HR-TEM image, (f) SAED pattern, and (g) elemental mapping images.

Fig. S5. TG curves of the multiroom-structured (a) MoS₂-Ni₉S₈-C and (b) MoSe₂-NiSe-C microspheres.

Fig. S6. (a, b) N_2 adsorption and desorption isotherms and (c, d) BJH pore size distributions of the multiroom-structured MoX₂-NiX_y (X= S or Se) and MoX₂-NiX_y-C.

Fig. S7. Long-term cycling performances of the multiroom-structured $MoS_2-Ni_9S_8-C$ and $MoS_2-Ni_9S_8$ microspheres at a current density of 0.5 A g⁻¹.

Fig. S8. (a) Gravimetric and (b) areal capacities of the MoS₂-Ni₉S₈ microspheres at different active material mass loadings on the electrode.

Fig. S9. Morphology of the multiroom-structured MoS₂-Ni₉S₈-C microspheres after 1000 cycles.

Fig. S10. (a, b) Morphologies of the MoS_2 -Ni₃S₂ powders powders obtained by sulfidation of the microspheres prepared from the spray solution without dextrin: (a) low resolution and (b) high resolution SEM images, and (c) XRD pattern.

Fig. S11. Electrochemical properties of the $MoS_2-Ni_3S_2$ powders obtained from the microspheres prepared from the spray solution without dextrin: (a) first and second charge-discharge curves at a current density of 0.5 A g⁻¹ and (b) cycling performance at a current density of 0.5 A g⁻¹.

Fig. S12. Schematic diagram of the pilot-scale spray drying system.

Table S1. Electrochemical properties of various nanostructured NiS_x and MoS_x materials applied as sodium-ion batteries reported in the previous literatures.

Electrode materials	Preparation method	Current density [A g ⁻¹]	Initial discharge/charge capcities [mA h g ⁻¹]	Discharge capacity [mA h g ⁻¹] and (cycle number)	Rate capacity [mA h g ⁻¹]	Ref.
Layered nickel sulfide-reduced graphene oxide composites	Microwave- assisted method	0.1	665/513	392 (50)	346 (1.0 A g ⁻¹)	[36]
NiS _x /CNT@C	Solvothermal	0.1	760/450	340 (200)	208 (2.0 A g ⁻¹)	[35]
Nickel disulfide-graphen e nanosheets	Hydrothermal	0.087	833/518	313 (200)	168 (1.6 A g ⁻¹)	[S1]
Porous clustered network-like Ni ₃ S ₂ /Ni	Hydrothermal	0.05	373/320	315 (100)	218 (0.8 A g ⁻¹)	[S2]
MoS ₂ /electrospun carbon nanofiber composite	Electrospinnin g	1.0	754/483 at 0.05 A g ⁻¹	198 (500)	148 (3.2 A g ⁻¹)	[S3]
Nitrogen-Doped Carbon Embedded MoS ₂ Microspheres	Hydrothermal	0.15	810/579	340 (150)	180 (3.0 A g ⁻¹)	[28]
MoS ₂ nanosheets decorated Ni ₃ S ₂ @MoS ₂ coaxial nanofibers	Hydrothermal	0.2	707/593 at 0.1 A g ⁻¹	483 (100)	356 (3.0 A g ⁻¹)	[27]
MoS ₂ -Ni ₉ S ₈ composite microspheres	Spray drying	0.5	657/499	459 (80)	428 (3.0 A g ⁻¹)	This work
MoS ₂ -Ni ₉ S ₈ -C composite microspheres	Spray drying	0.5	584/380	285(1000)	307 (3.0 A g ⁻¹)	This work

Electrode materials	Preparation method	Current density [A g ⁻¹]	Initial discharge/charge capcity [mA h g ⁻¹]	Discharge capacity [mA h g ⁻¹] and (cycle number)	Rate capacity [mA h g ⁻¹]	Ref.
NiSe ₂ -rGO-C composite nanofibers	Electrospinning	0.2	717/516	468 (100)	243 (3.0 A g ⁻¹)	[38]
core-shell NiSe/C nanospheres	Hydrothermal	0.1	493/398	283 (50)	172 (0.5 A g ⁻¹)	[S4]
Fullerene-like MoSe ₂ nanoparticles- embedded CNT balls	Spray pyrolysis	0.2	626/457	296 (250)	280 (3.0 A g ⁻¹)	[13]
C-MoSe ₂ / reduced graphene oxide composite	Hydrothermal	0.2	774/483	445 (350)	284 (2.0 A g ⁻¹)	[29]
MoSe ₂ microspheres	Colloidal	0.042	520/430	345 (200)	298 (0.4 A g ⁻¹)	[S5]
MoSe ₂ nanosheets grown on carbon cloth	Solvothermal	0.2	888/~453	387 (100)	240 (2.0 A g ⁻¹)	[30]
MoSe ₂ -NiSe- NiSe ₂ composite microspheres	Spray drying	0.5	608/450	291 (80)	-	This work
MoSe ₂ -NiSe-C composite microspheres	Spray drying	0.5	546/382	386 (80)	301 (3.0 A g ⁻¹)	This work

Table S2. Electrochemical properties of various nanostructured NiSe_x and MoSe_x materials applied as sodium-ion batteries reported in the previous literatures.

- [S1] T. Wang, P. Hu, C. Zhang, H. Du, Z, Zhang, X. Wang, S. Chen, J. Xiong, G. Cui, ACS Appl. Mater. Interfaces, 2016, 8, 7811-7817.
- [S2] X. Song, X. Li, Z. Bai, B. Yan, D. Li, X. Sun, Nano Energy, 2016, 26, 533-540.
- [S3] C. Chen, G. Li, Y. Lu, J. Zhu, M. Jiang, Y. Hu, L. Cao, X. Zhang, *Electrochim. Acta*, 2016, 222, 1751-1760.
- [S4] Z. Zhang, X. Shi, X. Yang, *Electrochim. Acta*, 2016, 208, 238-243.
- [S5] H. Wang, L. Wang, X. Wang, J. Quan, L. Mi, L. Yuan, G. Li, B. Zhang, H. Zhong, Y. Jiang, J. *Electrochem. Soc.*, 2016, 163, A1627-A1632.