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1. Crystal Structure Data

Table S1. Crystal data and structure refinement for 4.

Identification code 4

CCDC number 1526400

Empirical formula C;H5N-0;

Formula weight 187.14

Temperature 1502) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P2,/c

Unit cell dimensions a=12.6446(6) A ol1=90°
b=14.4368(7) A L1=96.954(2)°
c=17.7331(4) A yJ =90°

Volume

V4

Density (-123 °C)

Denisty (20 °C)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 25.242°
Absorption correction

Max. and min. transmission
Refinement method

Data / restraints / parameters
Goodness-of-fit on F2

Final R indices [[>2sigma(I)]
R indices (all data)

Largest diff. peak and hole

1401.27(12) A3

8

1.774 Mg/m3

1.738 Mg/m3

0.155 mm-!

768

0.258 x 0.215 x 0.029 mm?3
2.150 to 26.360°.

-15<=h<=15, -18<=k<=18, -9<=I<=9
16794

2858 [Rin = 0.0349]

99.7 %

Semi-empirical from equivalents
0.7460 and 0.6876

Full-matrix least-squares on F2
2858 /8 /257

1.062

R, =0.0367, wR, = 0.0928

R, =0.0545, wR, =0.1011

0.229 and -0.231 e.A-3
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Table S2. Crystal data and structure refinement for 7.

Identification code 7

CCDC Number 1526401

Empirical formula CgHi4N»,0O4

Formula weight 504.41

Temperature 1502) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P2,/c

Unit cell dimensions a=12.9443(6) A al1=90°
b=22.3674(10) A S=103.600(2)°
c=6.8059(3) A yJ =90°

Volume 1915.26(15) A3

Z 4

Density (-123°C) 1.749 Mg/m’

Density (20°C) 1.712 Mg/m?

Absorption coefficient 0.151 mm-!

F(000) 1040

Crystal size

Theta range for data collection
Index ranges

Reflections collected
Independent reflections
Completeness to theta = 25.000°
Refinement method

Data / restraints / parameters
Goodness-of-fit on F°

Final R indices [[>2sigma(])]
R indices (all data)

Largest diff. peak and hole

0.295 x 0.081 x 0.030 mm’
3.176 to 26.368°.

-16<=h<=16, -25<=k<=27, -8<=I1<=8
18805

3923 [Riy = 0.0529]

99.9 %

Full-matrix least-squares on F
3923/6/340

1.020
R, =0.0387, wR, = 0.0850

R, = 0.0699, R, = 0.0963
0.253 and -0.270 e.A”

s4



Table S3. Hydrogen bonds for 4 [A and °].

D-H..A d(D-H) d(H...A) d(D...A) <(DHA)
N(6)-H(6)...0(2) 0.88 2.19 2.651(2) 112.6
N(6)-H(6)...0(26A) 0.88 1.94 2.747(4) 151.8
N(6)-H(6)...0(26B) 0.88 1.82 2.649(4) 157.1
N(9)-H(9)...0(13)#1 0.88 2.05 2.9269(19) 174.9
N(9)-H(9)...0(14)#1 0.88 2.39 2.997(2) 126.4
N(18)-H(18)...0(14) 0.88 2.14 2.6051(19) 112.2
N(18)-H(18)...0(25)#3 0.88 1.88 2.718(2) 159.9
N(@21)-H(21)...0(1) 0.88 2.49 3.198(2) 137.6
N(21)-H(21)..N(4) 0.88 1.98 2.841(2) 165.5
C(22)-H(22)...0(13)#2 0.95 2.52 3.102(2) 119.3
0(25)-H(25A)..N(7) 0.821(10)  2.411(16) 3.124(2) 146(2)
0(25)-H(25A)...0(26A)#4 0.821(10) 2.43(2) 3.047(7) 132(2)
0(25)-H(25B)...0(2)#5 0.823(10)  2.139(13)  2.9008(19) 154(2)
O(26A)-H(26A)...0(1)#5 0.834(10)  2.096(18) 2.761(3) 136(2)
O(26A)-H(26B)..N(19)#5 0.838(10)  2.315(15) 2.967(3) 134.9(17)

Symmetry transformations used to generate equivalent atoms:
#1 x,y+1,z #2 -x+2,y+1/2,-z+1/2 #3 x,y-1,z
#4 x,-y+3/2,z-1/2 #5 -x+1,y+1/2,-z+3/2

Table S4. Hydrogen bonds for 7 [A and °].

D-H..A d(D-H) d(H...A) d(D...A) <(DHA)
N(14)-H(14A)...0(2)#1 0.88 1.97 2.748(2) 146.7
N(14)-H(14A).. N(3)#1 0.88 2.68 3.517(2) 158.9
N(14)-H(14B)...0(35)#1 0.88 2.02 2.893(2) 174.3
N(16)-H(16)...0(1)#1 0.88 2.63 3.363(2) 142.0
N(16)-H(16)..N(30)#1 0.88 2.30 3.003(2) 137.2
C(21)-H(21)...0(7)#2 0.95 2.44 2.976(2) 116.0
C(21)-H(21)..N(33)#2 0.95 2.53 3.297(3) 137.8
N(23)-H(23B)..N(11)#3  0.91(2) 2.68(2) 3.565(2) 164.9(19)
N(23)-H(23B)..0(12)#3  0.91(2) 1.99(2) 2.826(2) 152(2)
N(23)-H(23A)..N(8) 0.96(2) 2.23(2) 3.148(3) 160.7(19)
N(23)-H(23A)...0(13) 0.96(2) 2.44(2) 3.021(2) 119.1(17)
N(24)-H(24A)..N(10)44  0.88 2.05 2.890(2) 159.4
N(24)-H(24B)..N(17)#1 0.88 2.17 3.028(2) 164.7
N(26)-H(26)...0(2)#4 0.88 1.98 2.749(2) 145.8
N(26)-H(26)..N(3)#4 0.88 2.59 3.461(2) 172.7
N(26)-H(26)..N(4)#4 0.88 2.38 3.202(2) 155.2
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C(31)-H(31)...0(1) 0.95 2.54 3.126(2) 120.0

C(31)-H(31)..N(6) 0.95 2.51 3.350(3) 147.8
N(33)-H(33B)...0(34) 0.91(3) 2.56(3) 3.371(3) 149(2)
N(33)-H(33A)..0(35)#5  0.91(3) 2.09(3) 2.977(3) 166(2)
O(34)-H(34A)..NQ7)#6  0.839(10) 2.135(14) 2.942(2) 161(3)
O(34)-H(34B)..0(13)#2  0.835(10) 2.303(15) 3.072(2) 154(3)
O(35)-H(35B)..N(8)#7  0.833(10) 2.268(10) 3.101(2) 178(3)
0(35)-H(35B)...0(13)#7  0.833(10) 2.54(3) 2.976(2) 113(2)
0(35)-H(35A)...0(34)#8  0.841(10) 2.005(10) 2.844(3) 175(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+1 #2 -x,-y+1,-z+1 #3 x,-y+1/2,z+1/2
#4 -x+1,y+1/2,-z+1/2 #5 -x+1,-y+1,-z #6 x,-y+3/2,z+1/2
#7 x+1,y,z #8 -x+1,y-1/2,-z+1/2

2. Theoretical Calculation

The gas phase enthalpies of formation were calculated based on G2 method. The enthalpy of
reaction is obtained by combining the MP2/6-311++G** energy difference for the reactions, the
scaled zero point energies (ZPE), values of thermal correction (HT), and other thermal factors.
The solid state heats of formation of compounds 3 and 4 were calculated with Trouton’s rule
according to equation (1) (7 represents either the melting point or the decomposition temperature

when no melting occurs prior to decomposition).

AH, =188/ Jmol ' K™'xT (1)

For energetic salts 5 11, the solid-phase enthalpy of formation is obtained using a Born—Haber
energy cycle. For the compound which is a hydrate (4 and 6), the solid-phase enthalpy of

formation is obtained by adding the gas phase heat of formation of anhydrous compound to that of
water (-241.8 kJ mol!).

Table SS. Calculated the solid state heat of formation (HOF)

Compound AHy (kJ mol!) AR AR AHZ
(kJ mol") (kJ mol!) (kJ mol")
5 495.13 1137.35 -277.8 364.4
6 503.70 1137.35 -307.9 325.8
7 1126.37 1137.35 263.3 1411.6
8 1055.32 1137.35 463.5 1682.9
9 1052.54 1137.35 631.0 1853.2
10 1056.83 1137.35 664.1 1882.0
11 516.31 770 364.41 618.1
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3. NMR spectra
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